When Your Business Depends On It

The Evolution of a Global File System for a Global Enterprise

Phillip Moore
Phil.Moore@MorganStanley.com
Executive Director, UNIX Engineering
Morgan Stanley and Co.

Member, OpenAFS Council of Elders (AKA: OpenAFS Advisory Board)

Overview

- AFS in Aurora (MS Environment)
- VMS (Volume Management System)
- Auditing and Reporting
- AFS Growing Pains
- Future Directions

AFS in Aurora (MS Environment)

- For Aurora Project information see LISA '95 paper:
 - http://www.usenix.org/publications/library/proceedings/lisa95/ gittler.html
- Definition of Enterprise/Scale
- Kerberos Environment
- AFS Environment

AFS in Aurora • Definition of Enterprise/Scale

"Enterprise" unfortunately means "Department" or "Workgroup" to many vendors. "Scale" is often simply assumed to mean "number of hosts". It's not that simple:

- Machines: How Many and Where
 - 25000+ hosts in 50+ sites on 6 continents, sites ranging in size from 1500 down to 3
- Topology and Bandwidth of Network
 - Metropolitan WANs, very high bandwidth
 - Intercontinental WANs, as low as 64K
- System Criticality and Availability
 - 24 x 7 System Usage
 - Near-zero or Zero Downtime Requirement

AFS in Aurora • Kerberos Environment

- Single, Global Kerberos Realm
- Currently migrating from Cybersafe Challenger to MIT
- All AFS cells share same KeyFile
- All UNIX Authentication Entry Points are Kerberized, and provide
 - Kerberos 5 tickets
 - Kerberos 4 tickets
 - AFS tokens (for all cells in CellServDB)
- Many Applications/Systems use Kerberos credentials for authentication

AFS in Aurora • AFS Environment

- AFS is the Primary Distributed Filesystem for all UNIX hosts
- Most UNIX hosts are dataless AFS clients
 - Exceptions: AFS servers (duh), Backup servers
- Most Production Applications run from AFS
- No AFS? No UNIX

AFS in Aurora • Why AFS

Superior client/server ratio

- NFSv1 servers (circa 1993) topped out at 25:1
- AFS went into the 100s

Robust volume replication

- NFS servers go down, and take their clients with them
- AFS servers go down, no one notices (OK, for RO data only)

WAN File sharing

- NFS just couldn't do it reliably
- AFS worked like a charm

• Perhaps surprisingly, Security was NEVER a serious consideration

 However, had there been no pre-existing Krb4 infrastructure, AFS may have never been considered, due to the added integration challenges

VMS (Volume Management System)

• VMS :: Features

- Authentication and Authorization
- Automated Filesystem Operations
- The /ms Namespace
- Incremental/Parallel Volume Distribution Mechanism

• VMS :: Implementation

- Uses RDBM (Sybase) for Backend Database
- Coded in perl5 (but architected in perl4), SQL
- Uses Perl API for fs/pts/vos/bos commands

VMS: The Global Filesystem

- One top-level AFS "mount point (/ms instead of /afs)
- Choice of /ms stresses namespace, not filesystem technology or protocol
- Original plan was to migrate /ms from AFS to DFS/DCE
- Traditional /afs namespace exposes individual AFS cells, /ms hides them.

Traditional AFS	MS Namespace
/afs/transarc.com ibm.com cmu.edu nasa.gov	/ms/.global/ny.a ny.blocal dev dist group user

VMS: The Top Level Namespace

Six Top Level Directories under /ms

Туре	Directory	Function
Special	.global	Cell-specific, globally visible data
	.local	Local view of cell-specific data
Readonly	dist	Replicated, distributed data
Readwrite	dev	MSDE Development Area
	group	Arbitrary RW Data
	user	Human User Home Dirs

ReadWrite Namespace

- Three top level paths for globally visible, readwrite data
 - /ms/dev
 - /ms/group
 - /ms/user
- Location Independent Paths, symlinks that redirect into the cell-specific .global namespace
 - /ms/dev/perl5/AFS-Command -> ../../.global/ny.u/dev/perl5/AFS-Command/
 - /ms/user/w/wpm -> ../../.global/ny.w/user/w/wpm/
 - /ms/group/it/afs -> ../..//.global/ny.u/group/it/afs/
- Use of "canonical" location independent paths allows us to easily move data from one cell to another
- Data in RW namespace is NOT replicated

Global Cell Distribution

- Limits on Scalability
 - Fileservers scale infinitely
 - Database server do NOT (Ubik protocol limitations)
- Boundaries between cells determined by bandwidth and connectivity.
 - Originally, this meant one or two cells per building
 - Two cells per building in large sites (redundancy)
 - One cell per building in small sites (cost)
 - Today, large sites implement the Campus Model, some small sites have no local cell, and depend on the nearest campus.
- As of December 2003, we have 43 AFS cells
 - 21 Cells in 4 Campuses (NY, LN, HK, TK)
 - 17 Production, 4 Dev/QA
 - 20 Standalone Cells in Branch Offices
 - 2 Engineering/Test cells (NY)

MSDE Namespace (dev, dist)

- MPR = Metaproj/Project/Release
 - Metaproj: Group of related Projects
 - Project: typically a single software "product"
 - Release: typically a software version, such as 1.0, 2.1, etc.
- RW data for a single project lives in only one AFS cell
 - /ms/dev/afs/vms -> ../../.global/ny.v/dev/afs/vms/
- RW data for a metaproj can be distributed globally by placing different projects in different AFS cells.
 - /ms/dev/perl5/jcode -> ../../.global/tk.w/dev/perl5/jcode/
 - /ms/dev/perl5/core -> ../../.global/ny.v/dev/perl5/core/
 - /ms/dev/perl5/libxml-perl -> ../../.global/ln.w/dev/perl5/libxml-perl/
- Projects should be located "near" the primary developers, for performance reasons, but they are still visible globally.

MSDE Namespace (dist)

- /ms/dev is:
 - Not replicated
 - Not distributed (data lives in ONE AFS cell)
 - Readwrite
 - Obviously <u>not</u> suitable for use in production (obvious, right?)
- /ms/dist is:
 - Replicated
 - Distributed
 - Readonly
- WARNING: Existence in /ms/dist does NOT automatically imply production readiness
 - A necessary but not a sufficient condition
 - "Production" status of applications is not managed by VMS (yet...)

MSDE Namespace (default namespace)

- The "default" namespace merges the relative pathnames from numerous projects into a single, virtual directory structure
 - Fully qualified, release-specific paths:

Default symlinks:

```
/ms/dist/foo/bin/bar
    bin/baz
    etc/bar.conf
    include/header.h
    lib/libblah.so
    man/man1/bar.1
    man/man1/baz.1
-> ../PROJ/bar/1.0/exec/bin/baz
-> ../PROJ/bar/1.0/common/etc/bar.conf
-> ../PROJ/lib/1.1/common/include/header.h
-> ../PROJ/lib/1.1/exec/lib/libblah.so
-> ../PROJ/bar/1.0/common/man/man1/bar.1
-> ../../PROJ/baz/2.1/common/man/man1/baz.1
```

MSDE Namespace (default namespace, cont'd)

- Each distinct project can have ONE AND ONLY ONE default release
- Relative pathname conflicts are not allowed
 - If both foo/bar/1.0 and foo/baz/2.1 have a bin/configure, then only one of them can be made default.
- Defaults make it easier to configure the environment
 - prepend PATH /ms/dist/foo/bin
 - prepend MANPATH /ms/dist/foo/man
- Defaults are useful, but not ever production releases has to be made default.
 - Change Control is covered in Day Two

Auditing and Reporting • Cell Auditing

- 'bosaudit' checks the status of all the AFS database and file servers cell-wide. Some of the key auditing features include:
 - All Ubik services have quorom, uptodate database versions, and a single Ubik sync site
 - All Encryption keys are identical
 - Consistent server CellServDB configurations
 - Reports on Missing or Incorrect BosConfig entries
 - Disabled or temporarily enabled processes
 - Presence of core files

Auditing and Reporting • Cell Auditing (cont)

'vldbaudit' queries the entire VLDB and listvol output from all fileservers in the cell and does a full 2-way sanity check, reporting on:

- Missing volumes (found in VLDB, not on specified server/partition)
- Orphan volumes
- Offline volumes
- Incorrectly replicated volumes (missing RO clone, too few RO sites)

Auditing and Reporting • LastAccess Data

- Question: when was the last time someone accessed an AFS volume
 - vos commands won't tell you
 - volinfo will
- Batch jobs collect cell-wide volinfo data
- Data is correlated with VMS namespace, and per-release, per-project rollups are posssible
- Time for a demo...

AFS Horror Stories

- Cell Wide Outages and other unpleasant disasters
 - vos delentry root.afs
 - Busy/abort floods
- Slow disks (or a slow SAN), can mean client hangs
- RW Cluster recovery
- A RW server hangs in New York, and a VCS cluster in Tokyo panics

AFS Architectural Problems

- Single Threaded Client
- Single Threaded volserver
 - Solution is on the way
- Windows client SMB "hack"
- "vos" is WAY too smart
- PAGs, or the lack thereof, in Linux 2.6

AFS Politics and Culture

- Not a modern, sexy, technology anymore
- Taken for granted
- Every two years we have the "How can we get rid of AFS" department offsite
 - Same conclusion every time: we're stuck with it.
- Huge IT investment in storage technologies (SAN, NAS, appliances, etc), but... The Storage Engineering group doesn't manage AFS
 - Politics, not technology

AFS at Morgan Stanley: The Future

- Its here to stay: as goes AFS, so goes Aurora
- Use of RW data being actively discouraged
 - But wait until they find out how insecure NFS is, even V4.
- Windows clients are about to explode
 - OK, usage is going to explode, not the clients (I can dream...)
- No plans to replace AFS/VMS for managing software distribution
 - VMS desperately needs a complete rewrite