

When Your Business Depends On It

The Evolution of a Global File System for a Global Enterprise

Phillip Moore

Phil.Moore@MorganStanley.com

Executive Director, UNIX Engineering

Morgan Stanley and Co.

Member, OpenAFS Council of Elders
(AKA: OpenAFS Advisory Board)

Overview

• AFS in Aurora (MS Environment)

• VMS (Volume Management System)

• Auditing and Reporting

• AFS Growing Pains

• Future Directions

AFS in Aurora (MS Environment)

• For Aurora Project information see LISA '95 paper:
• http://www.usenix.org/publications/library/proceedings/lisa95/
gittler.html

• Definition of Enterprise/Scale

• Kerberos Environment

• AFS Environment

AFS in Aurora • Definition of Enterprise/Scale

• Machines: How Many and Where
– 25000+ hosts in 50+ sites on 6 continents, sites ranging in size from 1500

down to 3

• Topology and Bandwidth of Network
– Metropolitan WANs, very high bandwidth

– Intercontinental WANs, as low as 64K

• System Criticality and Availability
– 24 x 7 System Usage

– Near-zero or Zero Downtime Requirement

"Enterprise" unfortunately means "Department" or "Workgroup" to
many vendors. "Scale" is often simply assumed to mean "number of
hosts". It’s not that simple:

AFS in Aurora • Kerberos Environment

• Single, Global Kerberos Realm

• Currently migrating from Cybersafe Challenger to MIT

• All AFS cells share same KeyFile

• All UNIX Authentication Entry Points are Kerberized, and provide
– Kerberos 5 tickets

– Kerberos 4 tickets

– AFS tokens (for all cells in CellServDB)

• Many Applications/Systems use Kerberos credentials for
authentication

• AFS is the Primary Distributed Filesystem for all UNIX hosts

• Most UNIX hosts are dataless AFS clients
• Exceptions: AFS servers (duh), Backup servers

• Most Production Applications run from AFS

• No AFS? No UNIX

AFS in Aurora • AFS Environment

AFS in Aurora • Why AFS

• Superior client/server ratio
– NFSv1 servers (circa 1993) topped out at 25:1

– AFS went into the 100s

• Robust volume replication
– NFS servers go down, and take their clients with them

– AFS servers go down, no one notices (OK, for RO data only)

• WAN File sharing
– NFS just couldn’t do it reliably

– AFS worked like a charm

• Perhaps surprisingly, Security was NEVER a serious consideration
– However, had there been no pre-existing Krb4 infrastructure, AFS may have

never been considered, due to the added integration challenges

VMS (Volume Management System)

• VMS :: Features
– Authentication and Authorization

– Automated Filesystem Operations

– The /ms Namespace

– Incremental/Parallel Volume Distribution Mechanism

• VMS :: Implementation
– Uses RDBM (Sybase) for Backend Database

– Coded in perl5 (but architected in perl4), SQL

– Uses Perl API for fs/pts/vos/bos commands

VMS: The Global Filesystem

• One top-level AFS “mount point (/ms instead of /afs)
• Choice of /ms stresses namespace, not filesystem

technology or protocol
• Original plan was to migrate /ms from AFS to DFS/DCE
• Traditional /afs namespace exposes individual AFS

cells, /ms hides them.

Traditional AFS MS Namespace
/afs/transarc.com
 ibm.com
 cmu.edu
 nasa.gov
 ...
 ...

/ms/.global/ny.a
 ny.b
 ...
 .local
 dev
 dist
 group
 user

VMS: The Top Level Namespace

• Six Top Level Directories under /ms

Type Directory Function

Special
.global Cell-specific, globally

visible data

.local Local view of cell-specific
data

Readonly dist Replicated, distributed data

Readwrite

dev MSDE Development Area

group Arbitrary RW Data

user Human User Home Dirs

ReadWrite Namespace

• Three top level paths for globally visible, readwrite data
• /ms/dev
• /ms/group
• /ms/user

• Location Independent Paths, symlinks that redirect into
the cell-specific .global namespace

• /ms/dev/perl5/AFS-Command -> ../../.global/ny.u/dev/perl5/AFS-Command/
• /ms/user/w/wpm -> ../../.global/ny.w/user/w/wpm/
• /ms/group/it/afs -> ../..//.global/ny.u/group/it/afs/

• Use of “canonical” location independent paths allows us
to easily move data from one cell to another

• Data in RW namespace is NOT replicated

Global Cell Distribution

• Limits on Scalability
• Fileservers scale infinitely
• Database server do NOT (Ubik protocol limitations)

• Boundaries between cells determined by bandwidth
and connectivity.

• Originally, this meant one or two cells per building
– Two cells per building in large sites (redundancy)
– One cell per building in small sites (cost)

• Today, large sites implement the Campus Model, some small sites
have no local cell, and depend on the nearest campus.

• As of December 2003, we have 43 AFS cells
• 21 Cells in 4 Campuses (NY, LN, HK, TK)

– 17 Production, 4 Dev/QA
• 20 Standalone Cells in Branch Offices
• 2 Engineering/Test cells (NY)

MSDE Namespace (dev, dist)

• MPR = Metaproj/Project/Release
• Metaproj: Group of related Projects
• Project: typically a single software “product”
• Release: typically a software version, such as 1.0, 2.1, etc.

• RW data for a single project lives in only one AFS cell
• /ms/dev/afs/vms -> ../../.global/ny.v/dev/afs/vms/

• RW data for a metaproj can be distributed globally by
placing different projects in different AFS cells.

• /ms/dev/perl5/jcode -> ../../.global/tk.w/dev/perl5/jcode/
• /ms/dev/perl5/core -> ../../.global/ny.v/dev/perl5/core/
• /ms/dev/perl5/libxml-perl -> ../../.global/ln.w/dev/perl5/libxml-perl/

• Projects should be located “near” the primary
developers, for performance reasons, but they are still
visible globally.

MSDE Namespace (dist)

• /ms/dev is:
• Not replicated
• Not distributed (data lives in ONE AFS cell)
• Readwrite
• Obviously not suitable for use in production (obvious, right?)

• /ms/dist is:
• Replicated
• Distributed
• Readonly

• WARNING: Existence in /ms/dist does NOT
automatically imply production readiness

• A necessary but not a sufficient condition
• “Production” status of applications is not managed by VMS (yet...)

MSDE Namespace (default namespace)

• The “default” namespace merges the relative
pathnames from numerous projects into a single,
virtual directory structure

• Fully qualified, release-specific paths:

• Default symlinks:

/ms/dist/foo/PROJ/bar/1.0/common/etc/bar.conf
 man/man1/bar.1
 exec/bin/bar
/ms/dist/foo/PROJ/baz/2.1/common/man/man1/baz.1
 exec/bin/baz
/ms/dist/foo/PROJ/lib/1.1/common/include/header.h
 exec/lib/libblah.so

/ms/dist/foo/bin/bar -> ../PROJ/bar/1.0/exec/bin/bar
 bin/baz -> ../PROJ/baz/2.1/exec/bin/baz
 etc/bar.conf -> ../PROJ/bar/1.0/common/etc/bar.conf
 include/header.h -> ../PROJ/lib/1.1/common/include/header.h
 lib/libblah.so -> ../PROJ/lib/1.1/exec/lib/libblah.so
 man/man1/bar.1 -> ../../PROJ/bar/1.0/common/man/man1/bar.1
 man/man1/baz.1 -> ../../PROJ/baz/2.1/common/man/man1/baz.1

MSDE Namespace (default namespace, cont’d)

• Each distinct project can have ONE AND ONLY ONE
default release

• Relative pathname conflicts are not allowed
• If both foo/bar/1.0 and foo/baz/2.1 have a bin/configure, then only one

of them can be made default.

• Defaults make it easier to configure the environment
• prepend PATH /ms/dist/foo/bin
• prepend MANPATH /ms/dist/foo/man

• Defaults are useful, but not ever production releases
has to be made default.

• Change Control is covered in Day Two

Auditing and Reporting • Cell Auditing

• 'bosaudit' checks the status of all the AFS database and file servers
cell-wide. Some of the key auditing features include:

– All Ubik services have quorom, uptodate database versions, and a single
Ubik sync site

– All Encryption keys are identical

– Consistent server CellServDB configurations

– Reports on Missing or Incorrect BosConfig entries

– Disabled or temporarily enabled processes

– Presence of core files

Auditing and Reporting • Cell Auditing (cont)

'vldbaudit' queries the entire VLDB and listvol output from all
fileservers in the cell and does a full 2-way sanity check, reporting on:

– Missing volumes (found in VLDB, not on specified server/partition)

– Orphan volumes

– Offline volumes

– Incorrectly replicated volumes (missing RO clone, too few RO sites)

Auditing and Reporting • LastAccess Data

• Question: when was the last time someone accessed an AFS volume
– vos commands won’t tell you

– volinfo will

• Batch jobs collect cell-wide volinfo data

• Data is correlated with VMS namespace, and per-release, per-project
rollups are posssible

• Time for a demo...

AFS Horror Stories

• Cell Wide Outages and other unpleasant disasters
• vos delentry root.afs

• Busy/abort floods

• Slow disks (or a slow SAN), can mean client hangs
• RW Cluster recovery
• A RW server hangs in New York, and a VCS cluster in Tokyo panics

AFS Architectural Problems

• Single Threaded Client

• Single Threaded volserver
– Solution is on the way

• Windows client SMB “hack”

• “vos” is WAY too smart

• PAGs, or the lack thereof, in Linux 2.6

AFS Politics and Culture

• Not a modern, sexy, technology anymore

• Taken for granted

• Every two years we have the “How can we get rid of AFS”
department offsite

– Same conclusion every time: we’re stuck with it.

• Huge IT investment in storage technologies (SAN, NAS, appliances,
etc), but... The Storage Engineering group doesn’t manage AFS

– Politics, not technology

AFS at Morgan Stanley: The Future

• Its here to stay: as goes AFS, so goes Aurora

• Use of RW data being actively discouraged
– But wait until they find out how insecure NFS is, even V4.

• Windows clients are about to explode
– OK, usage is going to explode, not the clients (I can dream...)

• No plans to replace AFS/VMS for managing software distribution
– VMS desperately needs a complete rewrite

