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1 Abstract

Baryonic oscillations in the galaxy power spectrum have been studied as a way
of probing dark energy models. While most studies have focused on spectro-
scopic surveys at intermediate/high redshift, several multi-color imaging surveys
have already been planned for the near future. In view of this, we study the
prospects for measuring baryonic oscillations from angular statistics of galax-
ies binned using photometric redshifts. While baryonic features in the galaxy
power spectrum alone allow one to constrain dark energy parameters, a mea-
surement of the bispectrum allows one to additionally constrain a possibly scale
dependent bias and mass power spectrum amplitude. Thus we can obtain ro-
bust constraints on dark energy models even from imaging surveys. We discuss
the prospects for different survey parameters.

2 Theory

The dark energy formalism introduces a time dependent density described by
the dark energy equation of state:

w(a) :=
pde

ρde
= −1

3
d ln ρde

d ln a
− 1. (1)

We parameterize the equation of state as

w(a) = w0 + wa(1− a). (2)
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We suppose a biasing prescription to obtain the galaxy density contrast from
the matter density:

δg :=
δng

n̄g
(3)

= b1δ +
1
2
b2δ

2 + O(δ3). (4)

We calculate the projected galaxy power spectrum using the Limber approxi-
mation:

Pl =
1
n̄2

g

∫
dχ

[
pg(z)

dz

dχ

]2 1
χ2

Pg

(
l

χ

)
. (5)

Similar for the projected galaxy bispectrum:

B(l1, l2, l3) =
1
n̄3

g

∫
dχ

[
pg(z)

dz

dχ

]3 1
χ4

Bg

(
l1
χ

,
l2
χ

,
l3
χ

)
. (6)

To O(δ4), the galaxy bispectrum is

Bg(k1, k2, k3) = b3
1D

4 [2F2(k1, k2)P (k1)P (k2) + cyclic ki permutations]

+
1
2
b2
1b2D

4 [2P (k1)P (k2) + cyclic ki permutations] (7)

where

F2(k1, k2) =
5
7

+
1
2
k1 · k2

k1k2

(
k1

k2
+

k2

k1

)
+

2
7

(
k1 · k2

k1k2

)2

(8)

is the second-order perturbation theory kernel. The power spectrum covariance
for bin i with galaxy density n̄i is

Cl,l′ =
2

2l + 1

[
P (l) +

1
n̄i

]2

δll′ . (9)

We calculate the bispectrum covariance as

Cl1l2l3,l′1l′2l′3
= ∆l1l2l3l′1l′2l′3

[
P (l1) +

1
n̄i

] [
P (l2) +

1
n̄i

] [
P (l3) +

1
n̄i

]
, (10)

using the appropriate combinatorial factor ∆l1l2l3l′1l′2l′3
. We assume that the

likelihood function for the galaxy power spectrum and galaxy bispectrum is
gaussian, and employ a Fisher matrix analysis to approximate the likelihood
near the fiducial cosmological model defined by the parameters in Table 1. We
use 2 ≤ l1 ≤ l2 ≤ l3 ≤ lmax, where the small scale limit, lmax, is meant
to represent the scale beyond which perturbation theory is unacceptable. Non-
linear effects tend to erase baryon fluctuations, anyway. We define this (redshift-
dependent) scale as lmax = kmax/χ(z), where kmax is defined by

σ2 =
∫ kmax

0

d3k P (k) = 1. (11)
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Figure 1: Angular separation and wavenumber of the first five peaks in the
galaxy power spectrum induced by baryon oscillations as a function of galaxy
redshift. The dotted line corresponds to our upper cutoff lmax.



Parameter Fiducial Value Description
ωb 0.023 Baryon Physical Density
ωd 0.112 Dark Matter Physical Density

Ωde 0.69 Dark Energy Density Parameter
w0 -1 Equation of State Parameter (Eq. 2)
wa 0 Equation of State Parameter (Eq. 2)
As 0.82 Scalar Fluctutation Amplitude at k = 0.05/Mpc
ns 0.979 Primordial Spectral Index at k = 0.05/Mpc
α 0 Primordial Run (= d lnns/d ln k) at k = 0.05/Mpc
b1 0.998 First Order Galaxy Bias Factor (Eq. 4)
b2 0 Second Order Galaxy Bias Factor (Eq. 4)
τ 0.143 Optical Depth

Ωm 0.31 Matter Density
Ωb 0.053 Baryon Density

Ωtot 1 Total Density (Assume Flat Cosmology)
h 0.66 Current Hubble Parameter in Units of 100 km / s / Mpc

σ8 0.88 Galaxy-Scale Fluctuation Amplitude

Table 1: Our fiducial cosmological model.

Figure 2: Galaxy redshift distribution and binning scheme employed in our
analysis. The shaded regions were not used. The numbers indicate the galaxy
number density (per arcmin2) in each bin, with the last number representing
the remaining galaxies from z = 1.3 to infinity.
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Figure 3: Variations of the projected galaxy power spectrum (Eq. 5) under
different choices of parameters. In the lower panel, we divide by a smooth
spectrum calculated using the “no-wiggles” transfer function of Eisenstein &
Hu (1998). The vertical line indicates lmax, the high-l limit of our perturbative
approximation.
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Figure 4: Configuration dependence of the reduced projected bispectrum for
various parameters choices.










