Overview and Innerview of Black Holes

Kip S. Thorne, Caltech

Beyond Einstein: From the Big Bang to Black Holes SLAC, 14 May 2004

Black Hole Created by Implosion of a Star

Spinning Black Hole Kerr Solution of Einstein's Equations

Split Spacetime into Space + Time

Three Aspects of Spacetime Warpage for Quiescent Black Hole

Angular Velocity of Space (Frame Dragging)

Overview

Predictions from the Golden Age of Black-Hole Theory (1963 - 1976)

- Black-Hole Uniqueness (for quiescent hole, M and J => all)
 - ("no hair theorem")

•

- Cosmic Censorship (no naked singularities)
- Evolution of Horizon in Response to Tidal Gravity of Companion
- Rotational Energy and its Extraction
- The First and Second Laws of Black-Hole Mechanics
- Black-hole Vibrations (normal modes of oscillation)

Discuss these in context of LISA's Gravitational-Wave Observations

Go Beyond the Golden Age Predictions:

- The nonlinear dynamics of wildly disturbed BHs
- The structure of a black hole's interior

Black-Hole Uniqueness ("No-Hair" Theorem) [Israel, Carter, Robinson, ...]

- All quiescent astrophysical black holes are described by the Kerr metric, plus weak perturbations due to companions, accretion disks, magnetic fields, ...
- Kerr metric is fully determined by two parameters:
 - Hole's mass M (as manifest in Kepler's laws for distant planets)
 - or $GM/c^2 = M$ [$M_{sun} = 1.5 \text{ km}$]
 - Hole's spin angular momentum J (as manifest in frame dragging)
 - or J/Mc = a
 - *a* cannot exceed *M*; for *a* > *M* the Kerr metric describes a naked singularity
- "A black hole has no hair"

Examples of Black-Hole Properties as functions of *M***,** *a*

- Horizon angular velocity (ω at Horizon): $\Omega_{\rm H} = (a/M)(c/M)/(1+\sqrt{1-a^2/M^2})$ in units of $c/M = (0.2 \text{ rad/sec})(10^6 \text{ M}_{sun}/M)$
- Mass quadrupole moment, . $Q = Ma^2/3$, in units of MM^2

Map of Spacetime Geometry for a Fast-Spinning Hole (*a/M* = 0.998) and No Spin

Mapping a Large Hole's Spacetime Curvature via Gravitational Waves: LISA

Extracting the Map

- If waveform phase $\phi(t)$ slips by ~ 1 radian, it is obvious in cross correlation
- LISA's ideal source: ~ 10 M_{sun} hole spiraling into ~10⁶ M_{sun} hole:
 - ~ 200,000 cycles of waves in last year, emitted from orbital circumferences ~ 6 x (horizon circumference) and smaller.
 [Phase measureable to a part in a million]

Cosmic Censorship Conjecture [Penrose]

- In the modern universe (as opposed to the big bang):
 - Singularities occur only inside black holes
- No Naked Singularities
- GW searches for naked singularities:
 - -Map the spacetime geometry of massive body

LISA's EMRI observations

 Collisions of Black Holes: is the final object a black hole?

> Will be tested by LISA (and LIGO)

Tides on a Black-Hole Horizon Horizon Evolution

TIDE Tidal dissipation in horizon alters hole's mass and spin [Hartle and Hawking] Induced multipole moments: pull on small hole; alter its orbital energy & angular momentum; alter the GW phase evolution

Will be observed in detail by LISA

Horizon's Teleological Evolution

• Collapse of a thin shell onto a black hole

• Tide raised on horizon by small companion

Rotational Energy and Its Extraction

• Rotational energy resides in the whirling space outside the hole, and is extractable

The Laws of Black Hole Mechanics

• First Law -- connecting one quiescent (Kerr) BH state to another

$$- dM = \Omega_H dJ + (g_H / 8\pi) dA_H$$

Surface gravity = Horizon
lim \alpha a area

- Second Law -- for highly dynamical holes as well as quiescent: The horizon area A_H can never decrease
 - Example: Black-Hole Collisions:

 $A_{f} > A_{1} + A_{1}$

Will be tested by LISA (and LIGO)

The Laws of Black Hole Thermodynamics

- Stationary Observers outside a black hole see the horizon surrounded by a thermal atmosphere, with temperature $T = T_H / \alpha$; $T_H = (\hbar/2\pi k)g_H \sim 60$ nK (M_{sun} / M)
- The hole has an entropy $S_{\rm H} = k A_{\rm H} / 4L_{\rm Planck}^2 \sim 10^{77} k (M/Msun)^2$

- First Law: $dM = \Omega_H dJ + (g_H/8\pi) dA_H \iff dM = \Omega_H dJ + T_H dS_H$
- Statistical Mechanics of Entropy: $\exp(dS_H/k) =$ number of quantum mechanically distinct ways that dM and dJ could have been injected into the hole's thermal atmosphere
- Second Law -- A_H cannot decrease <=> S_H cannot decrease in classical general relativity.
 - More generally: Entropy of hole plus its environment cannot decrease

Black Hole Vibrations

- Normal Modes
 - Energy goes down horizon and out to infinity
 - "Hair" radiated away!
- Spectrum of modes:
 - f_{nlm} determined by M,a
- n=0, l=2, m=2 is easiest to excite; most slowly damped,
 - $f \approx (c/M) [1 0.63(1 a/M)^{0.3}]$
 - $Q = \pi f \tau \approx 2/(1 a/M)^{0.45}$
- Measure f & Q; infer *M* & *a*

Beyond the Golden Age: Black-Hole Interior

- Kerr exterior and Horizon
 - are stable against small perturbations
 - shake off all "hairs" but two: *M* & *a*

Kerr interior

- "Tunnel" into another universe
- Cauchy horizon at entrance to "tunnel"
 - Is unstable against small perturbations
 - For real black holes: replaced by a singularity

Black-Hole Interior

- After hole has settled into quiescent state:
 - Israel-Poisson weak, null singularity:
 - Monotonically diverging tidal forces, but
 - You hit the singularity before being crushed

Conclusion

- Gravitational wave observations (LISA and LIGO et al) will probe the structure and dynamics of black holes' warped spacetime in exquisite detail
 - A "golden age" of black-hole observation, to match the 1960's and 70's "golden age" of black-hole theory
- But observations will be limited to the holes' exterior.
 - In our lifetimes our only probes of black-hole interiors will be via pencil, paper, and supercomputer simulations (numerical relativity)