

Complementary Probes of Dark Energy

Eric Linder Berkeley Lab

To Λ or not to Λ

 $W_{const} = -1.05^{+0.15}_{-0.20} \pm 0.09 \quad (Knop et al. 2003) [SN+LSS+CMB]$ $W_{const} = -1.08^{+0.18}_{-0.20} \pm ? \quad (Riess et al. 2004) \quad [SN+LSS+CMB]$

Both models fit ΛCDM in

- CMB d_{lss} to <0.1%
- Structure growth to <4%
- SN distances to <0.1 mag

Future: δw_{const} =0.05 • Can distinguish these extremes from Λ • But not from w=-1.2

Beyond Λ , **Beyond** w_{const}

Λ can be deceiving:

- Models with (even strong) w' can look like w_{const}=-1
- Attractor (but w'): Linde linear, Steinhardt cyclic, Linder RipStop
- Attractor (but w'): Scalar-tensor (Matarrese et al.)

Acceleration explicit in expansion history a(t) Alterations to Friedmann expansion $\rightarrow w(z)$ $H^2 = (8\pi/3) \rho_m + \delta H^2(z) \rightarrow w(z) = -1 + (1/3) d \ln(\delta H^2) / d \ln(1+z)$

The next generation... Geometric – **Baryon Oscillations** Geometry+Mass – Weak Lensing, **Strong Lensing** Geometry+Mass+Gas – SZ Effect, Cluster Counts

SN Ia, SN II, Weak Lensing,

Cleanly understood astrophysics leads to cosmology

The Greatest Generation

Linder 2003

Complementarity

What is precise? What is accurate? What plays well with others?

SN+CMB have excellent complementarity, equal to a prior $\sigma(\Omega_M) \le 0.01$.

Frieman, Huterer, Linder, & Turner 2003

SN+CMB can detect time variation w´at 99% cl (e.g. SUGRA).

Supernovae + Weak Lensing

cccc

Wo

Systematics and Statistics

Supernovae:

~2000 SN (statistics + like vs. like), spectra, optical/NIR,

homogeneous sample, z=0.1-1.7

⇒ Space ~2000 SN, <0.02^m (1%)

Weak Lensing: shape noise, sample variance, linear and nonlinear mass spectrum (low / and high /), PSF resolution and stability, photo-z ⇒ need space, wide area (>1000 deg²?), ground

Parameter estimations from SN+WL(space) *including systematics*

Matter density:	0.30 ± 0.01
Dark energy density:	0.70 ± 0.01
"Springiness of space" (w):	-1.00 ± 0.05
Time variation of "springiness" (w´):	0.00 ± 0.11

Rosy View of Dark Energy

Systematics will impose a floor on precision gained from wider areas.

Challenge: usable f_{sky}, control systematics

Structure Growth: Linear

Baryon oscillations:

- Standard ruler: ratio of wiggle scale to sound horizon \rightarrow H(z) /($\Omega_m h^2$)^{1/2}
- Just like CMB simple, linear physics

KAOS [NOAO study] Kilo-Aperture Optical Spectrograph Galaxy redshift survey (400dF) 4000 spectra at once

Baryon oscillations have excellent complementarity with SN (if not Λ)

Structure Growth: Nonlinear

Effects of dynamical dark energy on structure formation

- Cluster abundances most sensitive at high z, high mass
- Systematics in observations, theory, interpretation!
- Mass threshold uncertainty of 0.1 dex gives

 $\delta w_{const} \sim 0.1$ [M. White], $\delta w' \sim ?$

Joint Dark Energy Measures

Frontiers of the Universe

Cosmology holds the key to new physics in the next decade.