Weak Gravitational Lensing and Cluster Counts

Alexandre Refregier (CEA Saclay)

Collaborators: Jason Rhodes (Caltech) Richard Massey (Cambridge) David Bacon (Edinburgh) Tzu-Ching Chang (Berkeley) Justin Albert (Caltech) Richard Ellis (Caltech) Adam Amara (Cambridge) Jean-Luc Starck (CEA Saclay) Sandrine Pires (CEA Saclay)

Beyond Einstein – SLAC – May 2004

Weak Gravitational Lensing

Distortion Matrix:

$$\Psi_{ij} = \frac{\partial \delta \theta_i}{\partial \theta_j} = \int dz \, g(z) \frac{\partial^2 \Phi}{\partial \theta_i \partial \theta_j}$$

→ Direct measure of the distribution of mass in the universe, as opposed to the distribution of light, as in other methods (eg. Galaxy surveys)

Scientific Promise of Weak Lensing

From the statistics of the shear field, weak lensing provides:

- Mapping of the distribution of Dark Matter on various scales
- Measurement of the evolution of structures
- Measurement of cosmological parameters, breaking degeneracies present in other methods (SNe, CMB)
- Explore models beyond the standard osmological model (ACDM)

Jain, Seljak & White 1997, 25'x25', SCDM

Cosmic Shear Surveys

WHT survey: 16'x8' R<25.5 20 gals/amin²

> Systematics: Anisotropic PSF

Cosmic Shear Measurements

Shear variance in circular cells: $\sigma^2_{\gamma}(\theta) = \langle \gamma^2 \rangle$

Bacon, Refregier & Ellis 2000* Bacon, Massey, Refregier, Ellis 2001 Kaiser et al. 2000* Maoli et al. 2000^* Rhodes, Refregier & Groth 2001* Refregier, Rhodes & Groth 2002 van Waerbeke et al. 2000* van Waerbeke et al. 2001 Wittman et al. 2000* Hammerle et al. 2001* Hoekstra et al. 2002 * Brown et al. 2003 Hamana et al. 2003 * * not shown Jarvis et al. 2003 Casertano et al 2003* Rhodes et al 2004 Massey et al. 2004*

Cosmological Constraints

Shear correlation functions

Massey, Refregier, Bacon & Ellis 2004

$$\sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{0.51} = 1.09 \pm 0.12$$

Normalisation of the Power Spectrum

 \rightarrow Moderate disagreement among cosmic shear measurements (careful with marginalisation) \rightarrow This could be due to residual systematics (shear calibration?) \rightarrow Agreement on average with **CMB** constraints \rightarrow moderate inconsistency with cluster abundance (systematics or new physics?)

Shear Measurement: Shapelets

Methods: Kaiser, Squires & Broadhust (1995), Kuijken (1999), Kaiser (2000), Rhodes, Refregier & Groth (2000), Bridle, Marshall et al. (2001), Refregier & Bacon (2001), Bernstein & Jarvis (2001)

→ Joint analysis of COSMOS field: with HST/ACS, CFHT, Subaru

Primordial Non-Gaussianity

Amara & Refregier 2003

Primordial density PDF

Need strong non-gaussianity to explain scatter in σ₈
Not compatible with WMAP limit assuming the quadratic coupling model (Komatsu et al. 2003)
Scatter more likely due to systematics or other physics

Mass-Selected Clusters

Miyazaki et al. 2002

- complex relation between mass and light
- bright cluster counts in agreement with CDM models
- discovery of new clusters

3D Lensing: Mapping

Luminosity

Gravitational potential

COMBO17: Taylor, Bacon et al. 2004

3D Lensing: Statistical

COMBO17: Bacon, Taylor et al. 2004

Improvements on cosmological constraints

Tomography & cross-correlation cosmography: Hu 2002, Jain & Taylor 2003, Bernstein & Jain 2003, Hu & Jain 2003

Future Surveys

Survey	Diameter	FOV	Area $(d a a^2)$	start
DLS	(III) 2?4	(deg) 2?0.3	(deg) 28	1999
CFHTLS	3.6	1	172	2003
VST	2.6	1	x100	2004
VISTA	4	2	10000	2007
Pan-STARRS	4?1.8	4?4	31000	2008
LSST	8.4	7	30000	2012
SNAP/JDEM	2 (space)	0.7	1000	2014

Kaiser (1999), Rhodes, Refregier & Groth (2000), Refregier & Bacon (2001), Bernstein & Jarvis (2001), Hirata & Seljak (2002)

Advantages of Space

HST galaxy

HST galaxy, sheared

Small and stable PSF

→larger number of resolved galaxies

→ reduced systematics

Same galaxy, viewed from ground

Same galaxy, sheared, viewed from ground

SNAP/JDEM

SNAP:

- ~2 m telescope in space
- 1 sq. degree field of view
 0.35-1.7µm imaging and

(low-res) spectroscopy

- 0.1" PSF (FWHM)
- dedicated survey mode:
 - deep (15 deg²)
 - wide (300 deg²)
- → Wide field imaging from space

Institutions: LBNL, Goddard, U. Berkeley, CNRS/IN2P3/CEA/CNES, U. Paris VI & VII, Marseille, U. Michigan, U. Maryland, Caltech, U. Chicago, STScI, U. Stockholm, ESO, Instituto Superior Tecnico

Dark Energy and Weak Lensing

Dark Energy equation of state: $w=p/\rho$ (w=-1 for Λ) modifies:

- angular-diameter distance
- growth rate of structure

• power spectrum on large scales (Ma, Caldwell, Bode & Wang 1999)

a(t)

 \rightarrow *w* can be measured from the lensing power spectrum

→ But, there are degeneracies between w, Ω_M , σ_8 and Γ

Cf. Hui 1999, Benabed & Bernardeau 2001, Huterer 2001, Hu 2000, Munshi & Wang 2002

Prospect for SNAP

 \rightarrow SNAP will measure the evolution of the lensing power spectrum and skewness and is sensitive to the non-linear evolution of structures

Constraints on Dark Energy

SNAP wide (300 deg²)

 \rightarrow Tomography improves constraints on *w* by a factor of 2

→ Cosmic shear constraints complementary to those from SNe

Cluster Search with Weak Lensing

Cf. Hamana et al. 2003 Space-based surveys: more sensitive for cluster search, easier to compare to other probes (X-rays, SZ, optical)

Conclusions

- Weak Lensing measures the background of metric
 fluctuations: distortions of order 10⁻², non gaussian, 3D
 information, probes linear (>10') and non-linear (<10') scales
- Cosmic shear has now been measured with ground-based, space-based optical surveys and with a radio interferometer
- Cosmic shear is sensitive to dark matter and dark energy through geometrical effects and growth factor: distinguish dark matter and energy from modified gravity
- Future surveys offer bright prospects, but we must meet the challenge of systematics → Wide field mission in space:
 SNAP, JDEM, Beyond Einstein