KEK test area plans

Shuji Matsumoto
Accelerator Lab., KEK
Two X-band high power stations in KEK

Nextef (100MW)

- Modulator and twin klystrons
- Test area in Shield-A

KT-1 (50MW)

- Klystron Test,
- Small experiments (in Lead shield box)
What to be pursued by KEK X-band

- **Practical structure evaluation and develop high power system**
 - Aiming at CLIC design
 - Minimum required power and pulse width are ~ 75MW and ~ 240ns.
 - Nextef is our only choice to conduct this work. These parameters are just we are operating. Introducing power compression system is needed beyond these.

- **Basic research on high gradient**
 - Study with: Single-cell, Narrow waveguide, C10, CD10, ...
 - Required the power as low as10MW to very high >>100MW with pulse width ~500ns.
 - KT-1 is suitable for these works. We may use Shield-B with Nextef klystrons.

- **Development of components and devices**
 - load, directional coupler, ..., Klystron, ...
Pulse Compressor (circular TE11 / TE21) proposed by M. Yoshida.

22m - One Channel

TE₁₁ Mode
Converter

Upgrade using higher mode

TE₁₁-TE₁₂
Reflector

2009 version

1500ns → 300ns
Gain = 3.3 @ 3dB

Final version

750ns → 150ns
Gain = 3.6 @ 3dB

25 MW × 2 Klystons
× gain=3
→ 150MW
Gycom High-Q Cavity PC

Our colleague, Sergey Kuzikov from GYCOM, Nizny-Novgorod, Russia have proposed extremely interesting design of the cavity pulse compressor. The main features:

Big cavity volume with mixed-modes oscillation will provide enough Q-factor (~2*10^5).
The nature of the mixed-modes field pattern allows for the damping of the spurious modes, as well as for installation of the sufficient pumping of the cavity volume.
The clever idea - to use the iris position as a frequency tuner will keep the quality of the modes mixing unperturbed during tuning procedures.
The overall design looks very simple and inexpensive.
He confirmed that they are interested in building the device for us.

\[
Q_{ohm} = \frac{2kl}{2P_u + 2P_{con} + P_{iris} + P_{plunger}} = \frac{365}{2 \cdot 4.2 \cdot 10^{-5} + 2 \cdot 1.5 \cdot 10^{-4} + 1.5 \cdot 10^{-4} + 3 \cdot 10^{-4}} = 4.4 \cdot 10^5
\]

\[
Q_{diff} = \frac{365}{1 \cdot 10^{-3}} = 3.7 \cdot 10^5
\]

\[
Q_0 = \frac{Q_{ohm} \cdot Q_{diff}}{Q_{ohm} + Q_{diff}} = 2 \cdot 10^5
\]
12 GHz, cavity-based pulse compressor (SLED or BOC); compression: 1500 ns → 300 ns

Discussion:
The cavity with Q-factor above 80,000 will be sufficient to provide 100 MW flat pulses from 50 MW klystron.

- The SLED cavities (cylindrical $H_{\text{Q,NM}}$) are at their performance limit; the $Q > 100,000$ is very challenging.
- Another challenge is a rather small coupling factor (~3) and as a consequence - the small diameter coupling holes in 100 MW device. Still possible?
- The BOC cavity (moderate version) can easily provide 150,000 (180,000 was demonstrated in high power BOC version in KEK). + Distrib coupling (many (~40-100) holes)
Proposal
Pulse compression systems

Construct Yoshida PC of “final version” (double-mode version). The compressed power goes to Shield-A for the structure test.

Test of High-Q Cavity PC at Nextef. The (maximum) power of 50MW with 1.5us will be available for the test.

High-Q Cavity PC may be installed at KT-1.
Pulse compressors

<table>
<thead>
<tr>
<th>Source RF</th>
<th>Compressed (Gain=3)</th>
<th>Source RF</th>
<th>Compressed (Gain=2.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500ns</td>
<td>300ns</td>
<td>1500ns</td>
<td>300ns</td>
</tr>
<tr>
<td>25MW X 2</td>
<td>150MW</td>
<td>25MW</td>
<td>60MW</td>
</tr>
</tbody>
</table>

- Nextef: Yoshida Delay Line PC with Double Modes
- KT-1: Gycom High-Q cavity PC
Comment: Practical operation limit of PPM Klystron

Plots of Pulse Shortening Events on Power / Width plane.

- **PPM4 (2003)**
- **PPM4G2A (2006)**

- Practical operation limit of PPM Klystron is 25MW, 1.5us.
TE11/TE21 PC Configuration

- 3dB Hybrid
- Shield-B
- Shield-A
- PC coupler = 3dB Hybrid
- Nextef Klystrons: 25 MW x 2; 1.5us
- Mode Launcher:
 - Rect TE01 -> Circ TE11L
 - Circ TE11R -> Rect TE01
- Taper
- Circular Delay Line: 22 m Long
- Reflector: TE11 <-> TE21

Note: The Delay Line is also used as a transmission line of C-band RF.
Reconfiguration of transmission lines

Current configuration → Proposed configuration
Nextef Area as of July 3.

Nextef Klystrons and Modulator

Shield-A
(T18 Disk-> T18 Quad)

Shield-B

Phi-80 Circular waveguide
Nextef Planning
revised on July 1, 2009.

2009
1 2 3 4 5 6 7 8 9 10 11 12

2010
1 2 3 4 5 6 7

T18_VG2.4_Disk #2
TD18_VG2.4_Quad
TD18_VG2.4_Disk
T18_VG2.4_Disk #4

C-band line from KT-2
RF transmission test, SKIP test, structure (CKM-004) test
NWG Cu-005
Component tests

KT-1
C-band Structure Test

Gycom Pulse Compressor test
X-band transmission line construction

A
B
Nextef Configuration

KT-1
X-band

KT-2
C-band
Conclusion

Nextef

Sheild-A:

• We continue X-band structure tests.
• Delay Line Pulse Compression system will be installed in FY 2009. 150MW 300ns pulse is expected.
• DLPC starts operation in early summer 2010 after a 2m-long C-band structure test. (The test starts in April 2010. Note the test occupies the delay line.)

Sheild-B:
• X-band power line will be established from Nextef klystrons.

KT-1
• Continues tests of RF loads as well as klystron test.
• Install Gycom Cavity PC after its test(proposal).
Nextef planning (longer period)

- Establish system with KX03
- T18_VG2.4_Disk #2
- TD18_VG2.4_Quad
- TD18_VG2.4_Disk
- C-band structure test
- T18_VG2.4_Disk #3
- TD24_VG_Disk_Practical
- TD24_VG_Disk_Practical for long run
- Pulse compression
- Installation and commissioning
- KT-1
- Nextef

To be determined reflecting the status