Tracking Working Group Report

Mike Ronan

LBNL

ALCPG 2004 Winter Workshop SLAC, January 7-10, 2004

Detector Working Group: Tracking

Tracking Session I

Wednesday, Jan. 7, 1:00-3:00

Time	<u>Title</u>	<u>Speaker</u>
1:00-1:15	General Introduction	Bruce Schumm
1:15-1:30	General Thoughts About Tracker Designs	Richard Partridge
1:30-1:45	TPC Studies at UVIC	Dean Karlen
1:45-2:00	TPC Studies at Carleton	Kirsten Sachs
2:00-2:20	Beam Tests of a GEM-Based TPC	Mike Ronan
2:20-2:40	Some Comments on TPC Tracking	Hans Bichsel
2:40-3:00	GEM Manufacture	Ian Shipsey (Dan Pete

Tracking Session II

Wednesday, Jan. 7, 4:00-6:00

Time	<u>Title</u>	
4:00-4:20	Magnetic Field Tests of a Micromegas TPC	
4:20-4:30	Tracking R&D at Cornell and Purdue	
4:30-4:50	Forward Tracking and the Use of GEM's	
4:50-5:20	TPC Response Simulation and Pattern Recognition	
5:20-5:40	Progress & Plans for Bunch Timing w/ Scintillating Fibers	
	Thin Silicon Detectors	

Tracking Session III

Friday, Jan. 9, 8:30-10:30

- Time Title
- 8:30-8:20 Gamma-Gamma -> Hadrons Backgrounds
- 8:50-9:05 Pattern Recognition Studies at South Carolina
- 9:05-9:25 SD Outer Tracker Studies at SLAC
- 9:25-9:45 Frequency Scanned Interferometer Demonstration System
- 9:45-10:05 Progress Towards a Short-Shaping Time Solid State Tracker
- 10:05-10:30 **Closing Discussion**

Session convenors: Bruce Schumm, Dean Karlen & Keith Riles

- erson) an Sinpsey (Dan Pel
- Speaker Mike Ronan Dan Peterson Lee Sawyer Dan Peterson Rick Van Kooten Daniela Bortoletto
- Speaker Tim Barklow Achim Weidemann Steve Wagner Haijun Yang Bruce Schumm All

North American Large TPC detector simulations

LCD Modules: Pattern recognition Event display

Reminder: GEM and Micromegas

GEM: Two copper perforated foils separated by an insulator

The multiplication takes place in the holes.

Usually used in 3 stages, even 4

Micromegas : a micromesh sustained by 50-100 μ m - high insulating pillars. The multiplication takes place between the anode and the mesh

One stage

Slide stolen from P. Colas Amsterdam Tracking meeting March 31 2003

GEM Manufacture, I.Shipsey (D.Peterson)

Single roll of ~1,000 GEMS

^{5.4} keV X-ray peak

TPC Studies at U.Victoria, D.Karlen

GEM-based TPC

Triple GEM 8 pad rows 2mm X 6 mm

Cosmic ray tests TRIUMF 0.9T magnet DESY 5.3T magnet

Charge spreading

Suppressed by magnetic field in low field drift region ($\omega \tau$)

After pre-amplification in first GEM, make use of large diffusion in higher field transfer and induction gaps.

Point resolution

Down to 90 μ m compared to 60 μ m expected.

First MPGD TPC tracking in magnetic fields.

Beam Tests of a GEM-TPC, M. Ronan Karlsruhe, CERN, LBNL

GEM-TPC:

gases Ar-CH4 Ar-CO2 Ar-CO2-CH4 - TESLA TDR gas

Achieve resolutions of $< 100 \ \mu m$ with high efficiency, meeting TESLA TPC design requirements.

Magnetic Field Tests of a Micromegas TPC, M.Ronan

Berkeley, Orsay & Saclay

8

TPC Studies at Carleton, K.Sachs

>X-ray source, colliminated photon conversion creates electron cloud, size $\sim 50 \mu m$

> TPC test cell, 5mm drift distance, gas: Ar:CO₂ (90:10)

- Study both double GEM and Micromegas
- Use resistive anode to spread charge

DRIFT PLANE

nicromegas

READOUT

DRIFT GAP = 5.4 mm

RESISTIVE ANODE SURFACE RESISTIVITY

50 µm THICK MYLAR

50 µm THICK

READOUT PADS

READOUT

PCB

ADHESIVE

LAYER

SEE DETAIL A

~2.5 MΩ/

X-ray source

Micromegas signals

Cornell:

Electronics Purchase: VME Crate and Interface

Lab funds **FADC, 100 Mhz, 32 channels** HV crate and computer interface HV supplies: GEMS 20 KV supply module

<u>TPC Construction</u> (Design influenced by Victoria TPC)

60 cm drift 8.75" OD (Min. for mounting a 10cm GEM)

acrylic construction

==> Parts are being machined in LEPP shop. Brass field cage hoops and acrylic hoop support bars are completed.

Purdue:

<u>Readout module</u> construction waiting for pad design and drawing of mounting scheme.

Meanwhile, aging tests of 3M GEM's are continuing.

TPC Field cage

Purdue

Cornell

TPC Response Simulation and Pattern Recognition, D.Peterson

Response simulation

- e.g.
 - Clustering in r-•

criteria for minimum **central pad**, added **adjacent** pads **splitting** at a local minimum, can lead to pulse height merging and incorrect clustering.

Pattern recognition

Segments found in preselected, I.P. pointing, cones are used as seeds for finding tracks.

track finding efficiency

0.0+

-01 20 20

Pad width , mm Pad width [mm]

Cornell

Physics backgrounds

 $\gamma \gamma \to \pi^+ \pi^ \gamma \gamma \to \rho^+ \rho^-$

Summary

- Muon pairs and low-pt hadrons produced in the beam-beam interaction need to be considered along with e+e- pairs and high-pt hadrons.
- Muon pairs and hadrons create 124 detected charged tracks and 510 GeV detected energy per train. Tracker occupancies comparable to or greater than the occupancies from e+e- pairs.
- Further studies required to determine how well this background can be tagged and how much it will interfere with signal track finding/fitting and physics analyses.

SLAC

Yellow = muons Red = electrons Green = charged pions Dashed Blue = photons with E > 100 MeV

154 $\mu^+\mu^-$ pairs / train 56 GeV / train detected energy 24 detected charged tracks / train

56 hadronic events / train no pt cut; Ecm down to $\pi^+\pi^-$ threshold 454 GeV / train detected energy 100 detected charged tracks / train

Bunch Timing with Scintillating Fibers, R. van Kooten

Indiana & Notre Dame

Forward Tracking and the Use of GEM's, L.Sawyer

- GEM detector development for QWEAK tracker.
- Interest in Linear Collider, forward tracking identified as area needing work
 - Physics needs include luminosity, precision electroweak measurements (WW, WZ),
 SUSY searches & measurements (e.g. selectron production)
- Can a GEM-based detector work in the Intermediate to Forward region of proposed LC detector?
 - Concentrating on LD, region from lower TPC to mask (FCH in the TESLA detector design)
 - Competing technologies are straw tubes, scintillating fibers (intermediate tracker)

Computation mesh

LA Tech

Thin Silicon Forward Detectors, D.Bortoletto

Purdue

Forward Tracking Detectors

Silicon Outer Tracker

Issues

- Technical problems:
 - Manufacturing of thin devices is difficult
 - Thinning after processing is difficult
 - Industry has expressed interest in thin silicon devices
 - Collaboration with vendors is critical
- How thin:
 - The m.i.p. signal from such a thin, 50µm, silicon sensor layer is only ~3500 e-h pairs.
- R&D at Purdue has started last year. We got quotes from two vendors: Sintef and Micron
- Sintef: min. thickness 140 µm on 4 inch wafers
- Micron: 4" Thickness range from 20µm 2mm, 6" Thickness range from 100µm - 1mm

Layout for a forward pixel detector

Layout for a forward pixel detector

The SD Tracker

SD Outer Tracker Studies, S. Wagner

SiD Tracker

- 5 single-sided axial Si layers
- 7 μ m, 3 μ sec shaping
- Project VXD tracks out to SOD. Simple Helix fit. Assign hits. Get better as radius increases. proj. error = 500 µm to 75 µm.
- Start with qqbar events with no background at this time.

Need to show that it'll work.

→ Remaining 20% will be the test!

Fraction of tracks w/ all correct hits

SLAC

10

Short-Shaping Time Solid State Tracker, B.Schumm

^{**} Profile: "nlc chan-transient" [C:\Projects\NLC\preampTSMCmodels\nlc chan-nlc chan-transient.sim]

Freq.-Scanned Interferometer Tracker Alignment System, H.Yang

U. Michigan

Basic idea: To measure hundreds of absolute point-to-point distances of tracker elements in 3 dimensions by using an array of optical beams split from a central laser. Absolute distances are determined by scanning the laser frequency and counting interference fringes. Absolute 1D distance accuracy is of order 1 micron.

Demo System

Absolute Distance Measurements

An accuracy of 35 nm, or 50 ppb, was obtained.

GEM-TPC Distortion measurements

CERN test beam:

9 GeV hadrons

No problem with GEM operation.

Observe track positive ion distortions at high intensity.

• × noise pedestal calibration visualization online algorithm filo analyze directory load event pedestal noise cluster finder track finder paint event delete average: 1.47 min: 0 max: ▲
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■

<u>GEM feedback and TPC</u> <u>positive ion distortion</u> <u>models are under study.</u>