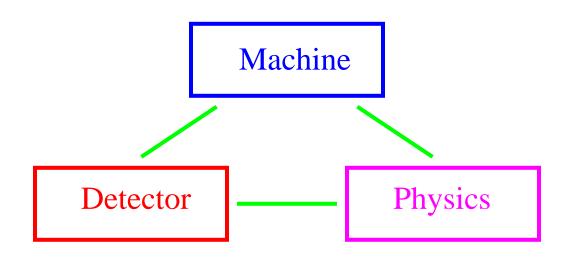


IP Beam Instrumentation Summary


ALCPG Linear Collider Workshop January 10th, 2004 SLAC

Eric Torrence University of Oregon

- Current Status
- Technology Issues
- Testbeams

Ensure adequate beam instrumentation to meet physics needs of LC

Prime topics

- Luminosity
- Beam Energy
- Polarization

We try to take a broad view...

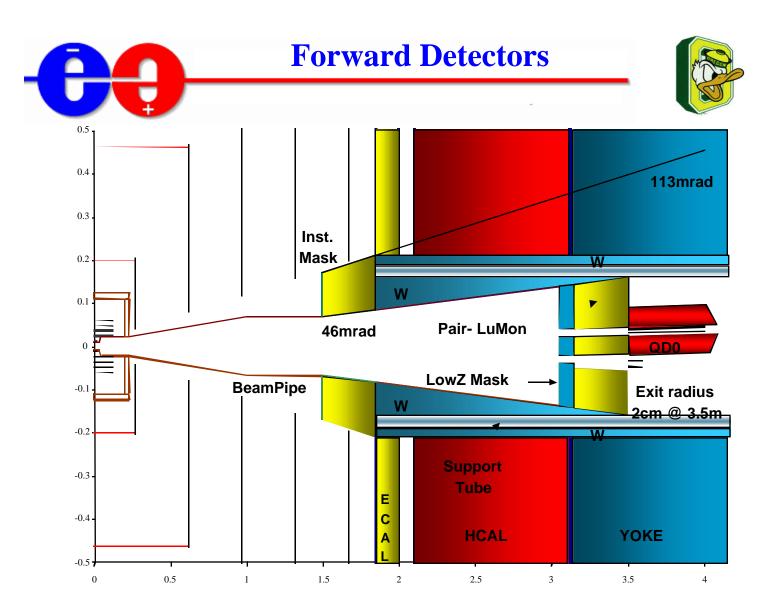
International effort

Problems trancend regional and thermal differences

Move from conceptual to more concrete designs

Polarimetry

• Pretty good shape


Luminosity (Spectrum)

- Sketch of hardware is there, need to flesh out details
- Understanding Lumi spectrum not in hand

Need to engage physics groups!

Beam Energy

- Need 'real-estate' planning
- Understand role of beam-based vs. physics

Specify geometry detail for both Gas Cherenkov and 3D Silicon detectors in this region

Must be fast (1 ns) to avoid pair pileup in far-forward region (warm) T. Maruyama

Technology Decision

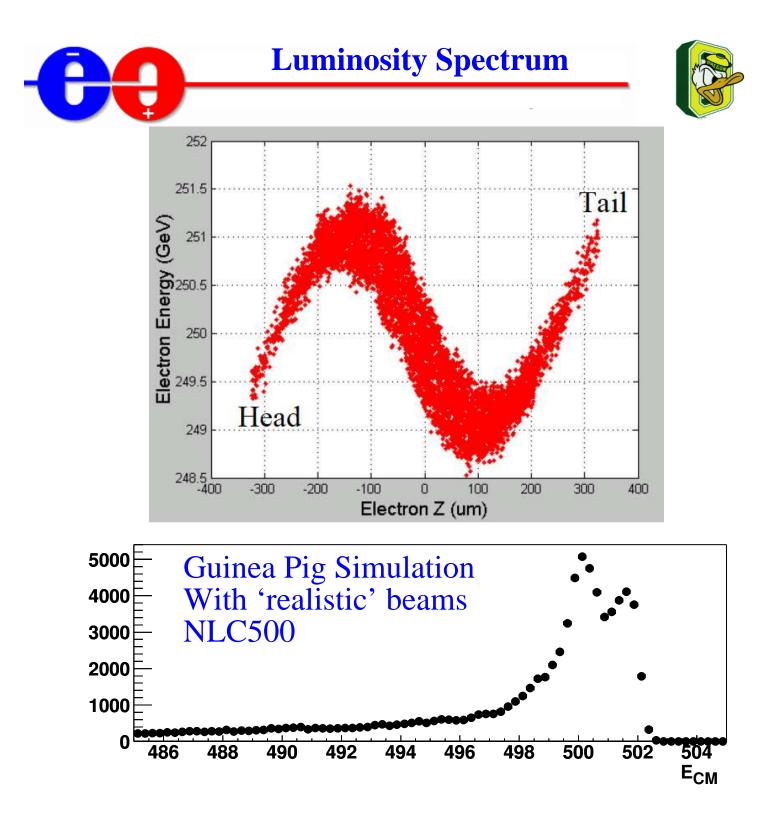
Warm vs. Cold?

- Big push in Europe to study this for Paris
- Many issues: IP layout, backgrounds, physics acceptance, extraction-line design, risk
- being well covered by Beam Delivery & NLC
- Also BI issue of downstream instrumentation

Nice talk from G. Wilson on physics and hermeticity in the forward detectors

Biggest question: is this really an issue at all?

Meeting at Zeuthen January 19th Please attend (at least virtually) if you have input


1.4ns sounds hard337ns sounds easier

Need a much more quantitative statement

Understand needs for fast diagnostics

Example: To what precision do we need Ebeam pulse-to-pulse? With what freqency?

Assess impact or risk on physics!

Ugly profile for warm, broader width Need real numbers on physics from real analyses

Beam Instrumentation Tests for the Linear Collider using the SLAC A-Line and End Station A

M. Woods, *et. al.* SLAC-LOI-2003.2 27 Physicists, 10 Institutions

http://www.slac.stanford.edu/grp/rd/epac/LOI/LOI-2003.2.pdf

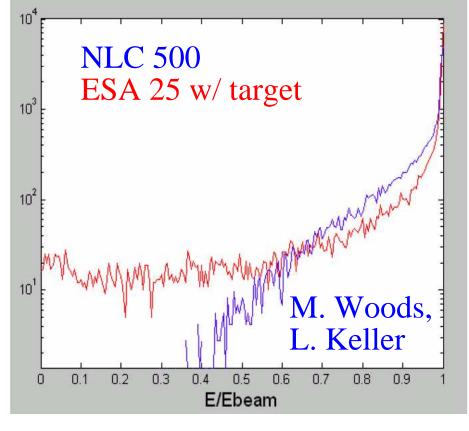
Letter of Intent submitted Nov. 2003 Well received by SLAC EPAC and lab

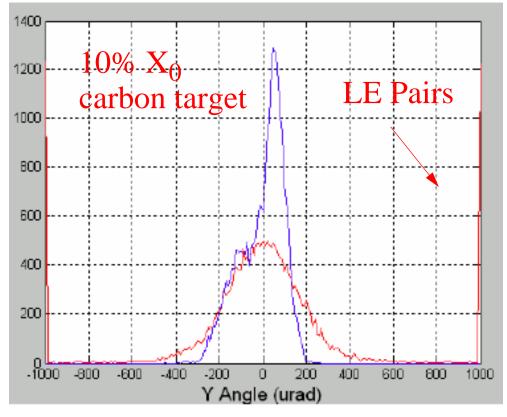
Testbeam for Beam Instrumentation Detectors Exploit infrastructure/knowledge from E158

Test some of the high risk BI components Start a facility for beam instrumentation R&D

	E158	NLC
Charge/pulse	6×10 ¹¹	14×10^{11}
Rate	120 Hz	120 Hz
Energy	45 GeV	250 GeV
Pulse Train	270 ns	267 ns
uBunch spacing	0.35 ns	1.4 ns
Beam Loading	13%	22%
Energy Spread	0.15%	0.16%
Intensity Jitter	0.5%	0.5%
Energy Jitter	0.03%	0.3%
Transverse Jitter	5% of spot	20-50%

For X-band, current beam very comparable (except energy and spot-size)


Thin radiator can replicate disrupted beam


Good infrastructure currently exists, but no physics planned for ESA!

Disrupted Beam

Eric Torrence

- User-driven proposals
- Need technical descriptions
- Combine requests into blocks, run plan

Proposal to SLAC EPAC by May 2004

First Phase

- IP BPMs fast feedbacks
- Energy BPMs
- Synchrotron-stripe diagnostics (WISRD)

Starting with ~1 week in 2005

- Later Phase(s)
 - Pair-monitor tests
 - Beam diagnostics, "wire" scanners
 - Spectrometer prototype
 - Polarimeter prototype
 - Your good idea!

Expect 1-2 weeks per year

Please contact M. Woods or E. Torrence Greater participation is welcome