

Beam Delivery System Design Differences

American Linear Collider Physics Meeting SLAC January 8th, 2004

Tor Raubenheimer

Introduction

Fundamental Warm/Cold differences vs. Design Choice:

- a. dE/E
- **b.** E vs. z correlation
- c. Bunch Length
- d. L*
- e. Positron production
- f. Flexibility of parameters for special running
- g. Off-energy running: updated parameter lists(?)
- h. IP1 vs. IP2 Performance

Bunch Length: warm / cold Differences

- The bunch length must be reduced from the damping ring length of ~ 5 mm to the linac length of a few hundred μm
 - Reduces hourglass (minimum $\beta^* \sim \sigma z$)
 - Reduces transverse wakefields (increases longitudinal wakes)
- Bunch length reduced in magnetic bunch compressors
 - Longitudinal phase space is essentially conserved
 - Intrinsic energy spread: $\Delta E * \sigma z$ in the DR = $\Delta E * \sigma z$ in BC
 - Relative energy spread decreases with acceleration
 - Emittance dilutions tend to scale with $(\Delta E/E)^2$
- SC has higher energy DR (larger longitudinal emittance)
 - Uses single stage compressor to go from 6 mm \rightarrow 300 μ m
- NC uses 2-stage compressor to go from 5 mm \rightarrow 110 μ m
 - Keeps $\Delta E/E$ small and maintains ϕ -E relation but is more complex
 - Allows for feed-forward from DR extraction

Bunch Compression: warm / cold Differences

• NLC 2-stage compressor (See LCC-0021)

- Important to minimize the 'turn-around' energy
 - Minimizes emittance growth $\Delta\gamma\epsilon \sim E^6$ and V_{RF} required scales as E / f_{RF}
 - However larger energy spread in BC2 leads to dispersive $\Delta \epsilon / \epsilon$
- Duplicating NLC system for TESLA would lead to 600% $\Delta\epsilon/\epsilon$ and would require 15 GeV of L-band rf
- Compressing another factor of 2 at 10 GeV would probably double the linac emittance growth from $50 \rightarrow 100\%$

Energy Spread: warm / cold Differences

- The energy spread in the beam is a combination of:
 - Incoherent energy spread from the bunch compressors, DR, or e+ source
 - Intrinsic energy spread is smaller in NLC than in TESLA because DR longitudinal emittance is smaller (low energy)
 - Correlated energy spread from the longitudinal wakefields and the rf
 - Stronger wakefields in NC design leads to large correlated energy spread along the bunch
 - Nominal profile is double peaked distribution
 - Can reduce core spread with slight decrease in luminosity
 - In SLC, the nominal correlated spread was similar $\sim 0.25\%$
 - FJD developed technique of shaping the longitudinal current distribution to minimize wakefield impact $\rightarrow 0.1\%$
 - Easy to trade correlated energy spread against emittance
 - Reduce charge and increase bunch length
 - Factor of 3 luminosity reduction for $\Delta E/E \rightarrow 0.05\%$

Energy Spread vs. RF Phase Angle

• Changing rf phase angle will decrease core energy spread but increase energy tails

Luminosity for Low Energy Operation

Many ways to optimize

In past asked to reduce beamstrahlung – now energy spread!

	IP Parameters for Low Energy Operation							
	90 GeV		250 GeV		350 GeV			
	1.4 ns	Low δB	1.4 ns	Low δB	1.4 ns	Low δB		
Luminosity (10 ³³)	3.9	1.3	10.5	3.6	14.7	5		
Pinch Enhancement	1.4	1.5	1.4	1.5	1.4	1.5		
Repetition Rate (Hz)	120	120	120	120	120	120		
Bunch Charge (10 ¹⁰)	0.75	0.4	0.75	0.4	0.75	0.4		
Bunches/RF Pulse	192	192	192	192	192	192		
Bunch Separation (ns)	1.4	1.4	1.4	1.4	1.4	1.4		
Injected $\gamma \epsilon_x$ / $\gamma \epsilon_y$ (10 ⁻⁸)	300 / 2	300 / 2	300 / 2	300 / 2	300 / 2	300 / 2		
γε _x at IP (10 ⁻⁸ m-rad)	360	360	360	360	360	360		
γε _y at IP (10 ⁻⁸ m-rad)	4	4	4	4	4	4		
eta_{x} / eta_{y} at IP (mm)	8 / 0.10	4 / 0.15	8 / 0.10	4 / 0.15	8 / 0.10	4 / 0.15		
σ _x / σ _y at IP (nm)	566 / 6.7	400 / 8.2	343 / 4.0	243 / 5.0	290 / 3.4	205 / 4.2		
σ _z at IP (um)	110	170	110	170	110	170		
L0 / Ltotal (%)	62	78	47	67	43	63		
Beamstrahlung δB (%)	0.25	0.11	1.5	0.7	2.7	1.3		
Photons per e+/e-	0.56	0.43	0.89	0.67	1.02	0.8		
Energy spread	0.25%	0.11%	0.25%	0.07%	0.25%	0.05%		

Energy Spread vs. Bunch Charge

Energy Spectra for 125um and N=0.5 1.0

Energy Spread vs. Bunch Charge

Scaling δ_{B} and δ_{E} with Luminosity

- Can reduce beamstrahlung and beam energy spread at the expense of the luminosity
 - Assuming flat beams:

- Decrease beamstrahlung by increasing horizontal beam size
- Decrease energy spread and beamstrahlung by increasing bunch length (tightens alignment tolerances)
- Decrease energy spread and beamstrahlung by decreasing bunch charge

IP Parameter Variation

- Cannot decrease Y β^* much below 100 μ m before aberrations become important
 - Hourglass prevents any gains in luminosity unless σz decreases also
- Probably could decrease X β^* by 3~4x \rightarrow 2X higher luminosity but lots of beamstrahlung!
 - Can be used to recover luminosity at lower current
 - Have to still look at the collimation issues (becomes like SLC)
 - At high energy, the Oide-effect will be worse
 - Similar reduction is probably possible in the cold BDS although larger X emittance may give some difficulty
 - Always possible to go to larger β^* to reduce beamstrahlung!

Nominal: 121.3 x 3 nm² Tracked: 132.56 x 3.21 nm² $\sigma_{x0} \sigma_{y0} / (\sigma_x \sigma_y)$ =85.5% with σ_E =0.25%

IP Free Space (L*): warm / cold Differences

- The IP chromaticity must be corrected with sextupoles
 - The chromaticity scales as: $\xi \sim L^*$ / β^*
 - Larger L* means larger chromaticity
 - Need to scale magnet apertures with L* due to physical aperture as well as wakefield effects
 - Magnetic gradient decreases with larger L* however Oide effect increases with L* (for same quad length)
 - Stronger sextupoles mean larger aberrations and tighter drift tolerances
 - Without including disruption effects, thw NC BDS tolerances are $\sim 2x$ tighter than SC tolerances because $\beta^* = 400 \ \mu m$ versus 100 μm
 - The larger disruption makes the tolerances comparable (some tighter and some looser)
- Bottom line: no temperature dependence!

BDS performance (July layout) 1st and 2nd IR

Geometric luminosity (normalized) of NLC BDS. Include effect of aberration and synchrotron radiation. Beam-beam enhancement is not included. Same normalized emittances assumed for the entire range.

FF upgrade means (1): reduce bending angle in FF

To reduce synch.radiation in FF magnets:

Reduce bending angle in FF twice, and increase bending angle in E-Collimation by ~15%.

Location of IP is fixed. BDS magnets need to be moved by ~20cm. Outgoing angle change by ~1.6 mrad

"Standard" (two way bending) BDS

FF upgrade means (2): use longer Final Doublet

2nd IR FD optimized for 90-650 GeV CM range

Longer FD allow to reduce luminosity degradation due to synch.radiation in FD (Oide effect).

2nd IR FD optimized for the energy upgrade

IP1 and IP2: warm / cold Differences

- Not much fundamental difference
 - Arcs are optimized to keep horizontal emittance dilution small
 - SC design has larger horizontal emittance so one might re-optimize the arcs slightly
 - The $\Delta \varepsilon / \varepsilon$ scales as $\Theta_{\rm B}{}^3 \rightarrow$ reduce number of cells by 30%
 - Disruption angles tend to be slightly larger in the SC design than in the NC design but this is a 20% effect
 - Smaller energy spread in the SC design is better for spin precession in arcs but this is sub-% reduction in polarization

Positron Source: warm / cold Differences

- Many unresolved questions regarding target viability of *both* undulator-based source and conventional source for *both* NC and SC designs
 - Target in SC design must be larger and rotate rapidly (see LCC-0133)

			NC Conv.	SC Conv.	NC Und.	SC Und.
		E beam [GeV]	6.2	6.2	153	153
•	Need to invest	Ne-/bunch [1e10]	0.75	2.00	0.75	2.00
6	additional effort on the	Undulator Len. [m]	-	-	150	150
		Energy/pulse [J]	477	28000	1130	44300
		Target Mat.	WRe	WRe	Ti	Ti
	conventional	Target Thick. [rl]	4	4	0.4	0.4
	source: $2 \sim 3x$ more <i>L</i> in the	Absorption	14.0%	14.0%	8.6%	8.6%
		Spot size [mm]	1.6	2.5	0.75	0.75
		# targets/spares	3 / 1	2 / 1	1 / 1	1 / 1
	first few years!	Target radius [m]	0.125	0.8	0.125	0.8
		Rotation [rpm]	46	1500	46	1200
		ΔT [C]	189	256	422	410
		Yield	1.5	1.5	1.5	1.5

Summary

- Beam Delivery System is very similar for warm and cold LC's
- Few intrinsic differences:
 - Larger correlated energy spread in the warm \rightarrow for cases that matter, $\Delta E/E$ can be traded against luminosity
 - Larger longitudinal phase space in cold DR makes further bunch compression difficult (not impossible!)
 - Further bunch compression could be used to reduce disruption or increase the luminosity
 - L* and β^* variation are temperature invariant
 - Crossing angle requirements are similar
 - Outgoing beam sizes are slightly larger in cold design but ...
 - Positron target is a bit more difficult in cold design but ...