

Beam Delivery System Risk Issues

American Linear Collider Physics Meeting SLAC January 8th, 2004

Tor Raubenheimer

Introduction

- Analyze risks to the LC project completion
 - Considered four categories:
 - Type: beam physics; engineering; production
 - Impact: impact on luminosity or energy reach
 - Time: when the problem would be uncovered
 - Consequence: impact of fixing the problem
 - Rankings in each category were then multiplied together
- Risk is evaluated against the design parameters: E & Lum.
- Risks is based on present evaluation
 - Many risks will change as R&D progresses
- Only considered a subset of relevant items broad scope
 A total of ~40 items for each of US warm and US cold are listed

Example 1: SLED-II

• SLED-II Demonstration

- Technology: State of the art = 4
- Effect: linear impact on energy = 3
- Time: R&D Stage = 1
- Consequence: Back to R&D = 4
- Total = 48
- SLED-II Production
 - Engineering: Feasible but untested = 3
 - Effect: linear impact on energy = 3
 - Time: PED Stage = 2
 - Consequence: Major rework = 3
 - Total = 54
- SLED-II Operations Example (not actually included)
 Total = 36

Example 2: Active Vibration Suppression

- Demonstration Example (not actually included)
 - Technology: R&D prototypes but extrapolation remains = 3
 - Effect: impact on luminosity is quadratic or steeper = 4
 - Time: R&D Stage = 1
 - Consequence: Back to R&D = 4
 - Total = 48
- Operations
 - Engineering: Feasible but untested = 3
 - Effect: impact on luminosity is quadratic or steeper = 4
 - Time: Pre-ops Stage = 3
 - Consequence: Major rework = 2
 - Total = 72
- Many items identified in BDS were high risk because uncovered late in the project cycle

Risk Evaluation

- High risks are attached to issues that are not understood or have not been demonstrated
- Risks are high when issues are demonstrated late in the project cycle
- One problem: all of us understand the warm better than cold
 - Much of cold design is based on the TESLA TDR but this has lots of known errors (and possibly a few unknown errors)
 - E+ source target damage
 - E+ source operations impact
 - Ions and e-cloud in DR
 - DR impedance
 - Collimation system efficiency
 - Single tunnel LC design

- E+ source yield
- DR dynamic aperture
- DR tolerances
- Emittance growth in LET
- Head-on collision extraction
- IP feedback
- I think we overcompensated in an attempt to be 'unbiased'

BDS Risks

- Compiled by Mike Harrison and myself
- Much of the BDS is conventional
 - Elements which are more novel include the superconducting final focusing magnets, the beam collimators, the vibration suppression systems, and the fast feedback systems
 - Beam dynamics issues which is novel are related to the short bunches, the higher energy, and the small beam emittances
- Operation of the BDS depends on the input beams
 - Emittances are designed to be the same
 - One significant difference between warm and cold is the incoming beam jitter
 - Another difference is the pulse structure

Table of LC BDS Parameters

	SLC	FFTB	US Warm	US Cold
Beam energy [GeV]	46	47	250	250
βx / βy [mm]	3 / 4	10 / 0.1	8 / 0.1	15 / 0.4
γεx / γεy [mm-mrad]	55 / 10	30 / 3	3.6 / 0.04	9.6 / 0.04
sx / sy [µm]	1.4 / 0.7	1.8 / 0.055	0.248 / 0.0030	0.554 / 0.0057
N [10 ¹⁰]	3.6	0.7	0.75	2.0
Nb	1	1	192	2820
Rep Rate [Hz]	120	30	120	5
Dy	2		12.8	21.9
Hd	2.2		1.46	1.77
Beam power [MW]	0.035	0.002	6.9	11.3
Solenoid [T]	0.6	0	3.0 ~ 6.0	3.0 ~ 6.0
Luminosity [cm ⁻² s ⁻¹]	3e30		2.1e34	2.6e34

Emittance and Jitter Budgets

- LET simulation codes benchmarked against each other
- Schulte and Walker, PAC 2003 and PT get similar results for the linacs
 - 40% growth through the linacs \rightarrow round up to 50%
- Some BDS tolerances tighter for cold and some looser
- Warm BC more complicated but lower $\Delta E/E$
 - Estimate for $\Delta \epsilon / \epsilon$ larger in cold BC than in warm but ...

	Warm LC			Cold LC		
	Δ y /σ	γεχ	γεγ	$\Delta y/\sigma$	γεχ	γεγ
Damping ring	10%	3.0E-06	2.0E-08	10%	8.0E-06	2.0E-08
Bunch comp	15%	10%	20%	15%	10%	20%
Main Linac	30%	5%	50%	100%	5%	50%
Beam Delivery	40%	5%	30%	30%	5%	30%
IP	0.53	3.60E+00	4.00E-08	1.06	9.60E-06	4.00E-08
Geo. Lum.	1.42E+34		1.45E+34			
HD	1.42		1.78			
Luminosity	2.08E+34			2.57E+34		

LC Environment

BDS Risks (1)

- Backgrounds = 81
 - Beam physics: Poor or ambiguous data indicates a problem = 3
 - Effect: linear impact on luminosity = 3
 - Time: Pre-Ops Stage = 3
 - Consequence: Major redesign = 3
- Why is there a risk?
 - We can model and design extensively now, but, turn the machine on and &*%^%!
 - This is the experience of most colliding beam facilities
 - Hard to fully model all parts of the problem
 - The LC is probably in better shape because we are so concerned
 - Calculated beam tails are similar in warm and cold designs at 10⁻⁶
 of the beam calculations are incomplete

BDS Risks (2)

- Final Magnet Stabilization = 72 (warm) = 0 (cold)
 - Engineering/Design: Feasible but untested = 3
 - Effect: Quadratic or steeper impact on luminosity = 4
 - Time: Pre-Ops Stage = 3
 - Consequence: Minor redesign = 2
- Why is there a risk?
 - Natural motion should be less than ~20 nm based on SLD measurements
 - Want to stabilize at the 0.5 nm level
 - Done in other cases but not in the IR environment
 - *Important* for operation (FONT may provide some backup)
 - Possible to develop in the lab and build a full mock-up during the PED phase (there is some risk associated with the lab development)
 - However, impossible to fully duplicate actual installation

Scenario 1: No stabilization, no FONT, quiet detector.

Scenario 2: No stabilization, need FONT*, noisy detector.
 Scenario 3: Stabilization, no FONT, noisy detector.

Percentage of luminosity obtained for each LC with ground motion models A ,B, C, with and without additional vibration of FD, and with different combinations of IP feedbacks and FD stabilization. With the intra-train feedback, neither FD noise nor stabilization was included. Averaged over 256 trains (50 for TESLA).

BDS Risks (3)

- IP Feedback Implementation = 48 (warm) = 72 (cold)
 - Engineering/Design: R&D prototype =2 (warm)
 - Engineering/Design: Feasible but untested = 3 (cold)
 - Effect: Quadratic or steeper impact on luminosity = 4
 - Time: Pre-Ops Stage = 3
 - Consequence: Minor redesign = 2
 - Note categories need to be interpreted broadly
- Why is there a risk?
 - Absolutely essential for luminosity after a few seconds
 - Unprecedented requirements sub-nm accuracy
- Why is cold harder than warm?
 - Higher resolution required for the same $\Delta L/L$
 - More complex system: multiple interacting feedbacks

Beam-Beam Deflection Resolution

• Required resolution is determined by the outgoing angles

- Tolerances are $1.5 \sim 2x$ tighter in cold LC

	Warm LC		Cold LC		
95% DL/L	1.1 nm	24 ur	0.65 nm	15 ur	
90% DL/L	1.9 nm	30 ur	1.2 nm	20 ur	
80% DL/L	3.5 nm	58 ur	2.6 nm	29 ur	
50% DL/L	11.1 nm	166 ur	10.5 nm	84 ur	

Outgoing Distribution

- High disruption makes the outgoing distribution highly nonlinear
 - May be difficult to determine 'centroid'
 - RF bpms may not work
 - It 'appears' that close to maximal luminosity is attained when the beam-beam deflection centroid is minimized

Solenoid and Crossing Angle

- Strong solenoid with the crossing angle will cause variation of the vertical trajectory with the horizontal position and with
 - the energy loss
 - These may degrade the effective resolution
 - Outgoing spectrum has a large fraction of bean particles at less than 50% energy
 - Low energy particles will get large deflection and may cause backgrounds

More Complex Feedback System (1)

- The higher disruption and the larger incoming beam jitter of the cold LC requires two linked feedback systems
 - TDR design has angle feedback ~850 meters upstream of IP
- Both angle and position setting change from pulse-to-pulse
 - Beam trajectory changes from pulse-to-pulse by ~ sigma
 - Impact of BDS wakefields has not been considered
 - Trajectory changes will generate varying beam tails
 - TDR design has 5% ∆N/N → trajectory changes from bunch-to-bunch

More Complex Feedback System (2)

- Changing IP angle through BDS will confuse BDS drift feedbacks
 - Drifts feedbacks are required to stabilize the trajectory at the BDS sextupoles at the sub-um level
 - 1-sigma angle change corresponds to \sim 100 um trajectory change
- Cold LC may need intra-train luminosity feedback as well as position and angle feedback
 - Require fast luminosity monitor that will not be impacted by changes in backgrounds
 - Beamstrahlung spectrum, energy loss, and deflections are very sensitive to collision parameters and tails
- Higher bandwidth not a fundamental limitation but complicates implementation
 - 3 MHz feedback requires significant faster processing → much faster BPMs and kickers

Simulation Results

- Early TDR simulations were incomplete
- Glen White has performed 'full' simulations of TESLA system
 - still 'work in progress'
 - Results published at PAC03 by Schulte, Walker, White showed an average luminosity of ~ 2.2e34 result below presented at SLAC
 - Each case depends on trajectory jitter – see Figure 7.18 from TRC
 - No wakefields and no correlations between backgrounds and trajectory

Summary

- Many other risk issues identified in BDS
 - Collective effects
 - Magnet jitter in BDS
 - Heating of SC IR magnets
 - Collimator performance and MPS limitations
 - Aberration tuning procedures
 - Crab cavity
- The upper 3.5 items are also issues that can only really be determined late in the project cycle
- Risks in the BDS are high because, although unlikely, there is significant luminosity impact and little time for remediation
- Given present knowledge, the risks in warm and cold BDS are very similar