# BI Tests for the Linear Collider Turning the LOI into a Proposal

#### SLAC ALCPG Meeting Jan. 9, 2004 M. Woods, SLAC

**LC-LEP Beam Tests at SLAC** Thermionic Polarized Electron Electron Source Source What are the first Beam Tests to be performed? What is the beamline configuration required? Positrons 2-Mile Linac to PEP-**Developing the Proposal** Electrons to ES/ Electrons to PEP-II Beam Switch Yard PEP-II Positron Source Positrons End Station A M. Woods (SLAC)

#### Beam Instrumentation Tests for the Linear Collider using the SLAC A-Line and End Station A

Y. Kolomensky University of California, Berkeley SLAC-LOI-2003.2

J. Hauptman, O. Atramentov Iowa State University

E. Gulmez, † E. Norbeck, Y. Onel, A. Penzo\* University of Iowa

> D. J. Miller University College London

R. Arnold, S. Hertzbach, S. Rock University of Massachussets

> M. Hildreth University of Notre Dame

E. Torrence University of Oregon

J. Clendenin, F.-J. Decker, R. Erickson, J. Frisch, L. Keller, T. Markiewicz, T. Maruyama, K. Moffeit, M. Ross, J. Turner, M. Woods SLAC

> W. Oliver Tufts University

G. Bonvicini, D. Cinabro Wayne State University

| 27 | physicists   |
|----|--------------|
| 10 | institutions |

†also Bogazici University, Istanbul, Turkey\*also INFN Trieste, Italy

http://www.slac.stanford.edu/grp/rd/epac/LOI/LOI-2003.2.pdf



## Luminosity

Fast Gas Cherenkov Calorimeter (*Iowa St.*)
Parallel Plate Avalanche, Secondary Emission Detectors (*Iowa*)
Large Angle Beamstrahlung Monitor (*Wayne St.*)
3d Si Detector for Pair Monitor (*Hawaii*)

#### **Energy**

Synchrotron Stripe Spectrometer (*Oregon, UMass*) rf BPM Spectrometer (*Notre Dame, UC Berkeley*)

#### **Polarization**

Quartz Fiber Calorimeter; W-pair asymmetry (*Iowa*) Background study (*Tufts*) Quartz Fiber Detector; transverse polarization (*Tennessee*)

## **General Comments**

#### **Risks to LC luminosity and LC physics capabilities**

• Any beam or detector instrumentation that cannot be commissioned until the LC is built have very high risk factors.

Do beam tests early!

#### **Beam-beam effects**

- much greater than in previous machines
- backgrounds
- large disruption and deflection angles

Mimick some beam-beam effects in a fixed target beam test

M. Woods (SLAC)

#### **Precision Measurements**

• Challenging requirements for luminosity, energy and polarization measurements

Instrumentation requires beam tests

## General Comments (cont.)

#### Breidenbach's talk on "Detector and the Technology Choice"

"background in the feedback BPM's could be a severe problem, and no relevant R&D seems plausible before commissioning. Actual luminosity (as opposed to offset) feedback may be needed"

#### Himel's talk on "US LC Options Study"

"MPS and items in the beam delivery system come out as the riskiest because the problems may not be found until commissioning."

#### We can do relevant R&D with beam tests in ESA

## Instrumentation for Luminosity, Luminosity Spectra and Luminosity Tuning

#### Luminosity

Bhabha LuMon detector from 40-120 mrad

#### **Luminosity Spectrum**

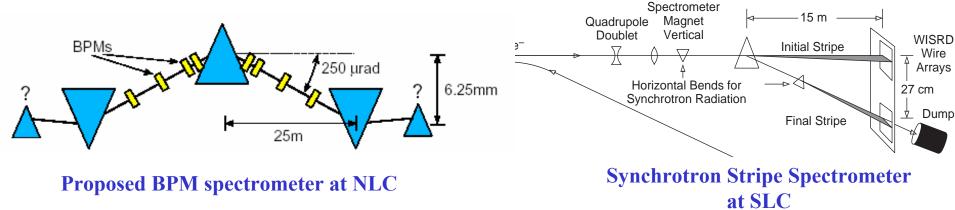
Bhabha acolinearity measurements using forward tracking and calorimetry from 120-400 mrad
+ additional input from beam energy, energy spread and energy spectrum measurements

#### **Luminosity Tuning**

Pair LuMon detector from 5-40 mrad Beamstrahlung detector from 1-2 mrad (further downstream) IP BPMs

## Instrumentation for Energy, Energy Spread and disrupted Energy Spectrum

#### Energy

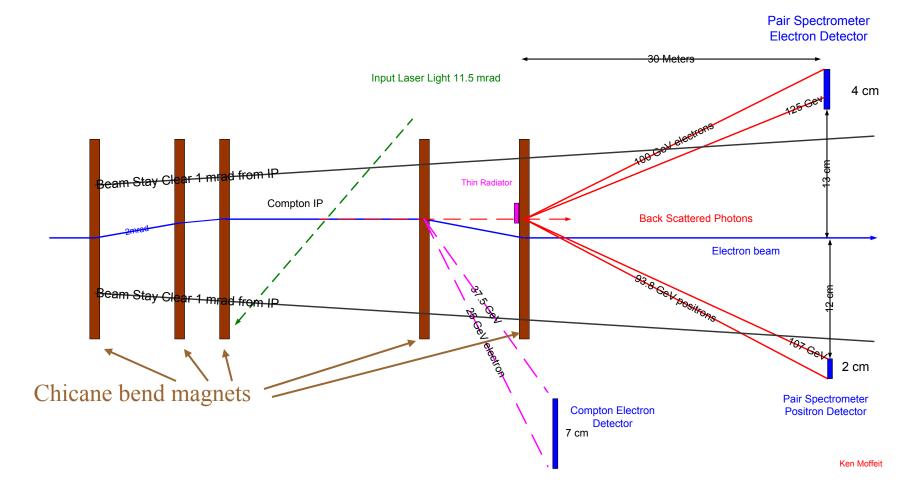

BPM spectrometer (upstream of IP) Synchrotron Stripe spectrometer (in extraction line)

#### **Energy Spread**

Synchrotron Stripe spectrometer (in extraction line) Wire scanner at high dispersion point in extraction line chicane

## **Disrupted Energy Spectrum**

Synchrotron Stripe spectrometer (in extraction line)<sup>(Electron ELS Shown)</sup> Wire scanner at high dispersion point in extraction line chicane




M. Woods (SLAC)

**BEAM OPTICAL ELEMENTS** 

## **Instrumentation for Polarimetry**

#### **Compton Polarimeter in Extraction Line**

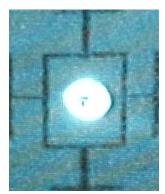


## **Beam Parameters at SLAC ESA and NLC-500**

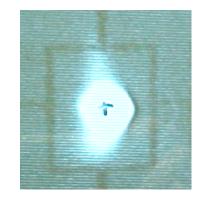
| Parameter                   | SLAC ESA             | NLC-500                 |
|-----------------------------|----------------------|-------------------------|
| Charge/Train                | 5 x 10 <sup>11</sup> | 14.4 x 10 <sup>11</sup> |
| Repetition Rate             | 10-30 Hz             | 120 Hz                  |
| Energy                      | 25 GeV               | 250 GeV                 |
| e <sup>-</sup> Polarization | 85%                  | 85%                     |
| Train Length                | 270ns                | 267ns                   |
| Microbunch spacing          | 0.3ns*               | 1.4ns                   |
| Energy Spread               | 0.15%                | 0.3%                    |

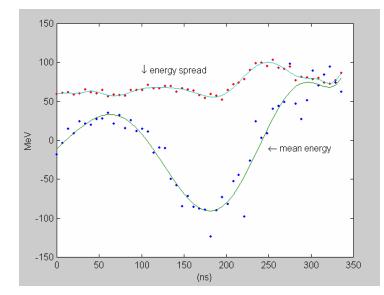
\*Polarized Source group is pursuing R&D to achieve 714MHz modulation and 1.4ns spacing

# Modulation of SLAC Polarized Electron Beam

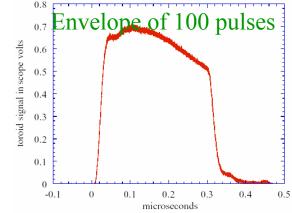

(see Sources talks by A. Brachmann and J. Clendenin)

- Technique: pass 300-ns flash-Ti laser pulse through Pockels cell modulated at 714 MHz
- Result will be a train of µbunches spaced 1.4 ns
  - Each "µbunch" will have 2 S-band buckets with some charge inbetween µbunches
- Beam-loading will limit peak current:
  - If Iavg in macrobunch is 0.5 A (E-158), then Ipk in µbunch is 2 A → implying 4x10<sup>9</sup> e<sup>-</sup> in single "µpulse"


### **Beam Parameters at SLAC ESA and TESLA-500**


| Parameter                   | SLAC ESA               | TESLA-500              |
|-----------------------------|------------------------|------------------------|
| Repetition Rate             | 10-30 Hz               | 5 Hz                   |
| Energy                      | 25 GeV                 | 250 GeV                |
| e <sup>-</sup> Polarization | 85%                    | 85%                    |
| Train Length                | 340 ns                 | 1 ms                   |
| Microbunch spacing          | 340 ns                 | 337 ns                 |
| Bunches per train           | 2                      | 2820                   |
| Bunch Charge                | 2.0 x 10 <sup>10</sup> | 2.0 x 10 <sup>10</sup> |
| Energy Spread               | 0.15%                  | 0.1%                   |

# **Can provide clean beams** (little halo or beam tails)




#### **Can provide beams with tails!**



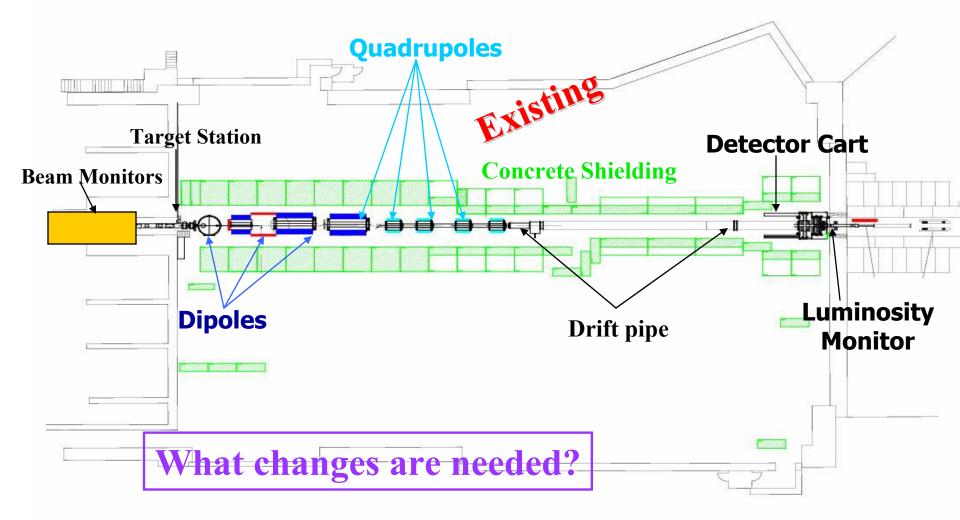


### Can provide "banana" beams in energy By pulse shaping source laser intensity



Can translate banana energy dist'n to banana spatial dist'n by introducing dispersion M. Woo

## **First Beam Tests**


#### **Needed for Proposal and to determine Beamline Configuration**

- 1. IP BPMs (necessary for fast inter-train and intra-train feedbacks)
- 2. Energy BPMs
- 3. Synchrotron stripe diagnostics for measuring energy, energy spread and the disrupted (brem) spectrum.

#### **Other possibilities:**

- 4. Pair detectors.
- 5. Beamstrahlung detector backgrounds (can't model 'visible' backgrounds at 1-2 mrad)
- 5. Test A-Line spin precession for use as energy measurement.

## **Determining the Beamline Configuration in ESA**



# **Developing the Proposal**

- 1. Identify first users for the Beam Test Facility
- 2. Users develop full technical description of beam tests
- **3.** Use beam test descriptions to determine beamline configuration
- 4. Formulate Run Plan for first beam tests
  - Beam requirements
  - Time required
  - Common DAQ?
- 5. Prepare SLAC Impact Report
  - Budget
  - Resources provided by SLAC
  - Resources provided by users
- 6. Proposal needed by May 2004