Feedback on Nanosecond Timescales (FONT): FONT2 December 2003 run results

Philip Burrows Queen Mary, University of London

- People
- FONT1 (2002)
- FONT2 (2003/4)
- Future FONT plans

FONT Group

• Queen Mary:

Philip Burrows (faculty), Glen White (RA), Tony Hartin (prog.) Stephen Molloy, Shah Hussain (grad. students)

• Daresbury Laboratory:

Alexander Kalinine, Roy Barlow (elec. eng.), Mike Dufau (des.)

Susan Smith, Rob Smith, Mike Dykes, Mike Poole

• Oxford:

Colin Perry (elec. eng.) + technicians

Gerald Myatt (retd. faculty) Simon Jolly, Gavin Nesom (grad students emeritii)

• SLAC:

Joe Frisch, Tom Markiewicz, Marc Ross

Chris Adolphsen, Keith Jobe, Doug McCormick, Janice Nelson, Tonee Smith, Mark Woodley + technical support

Beam-based Feedback (FONT)

FONT Luminosity Recovery (NLC 'H')

For small offsets (< 5 sigma), and appropriate gain: system can recover > 80% of design luminosity

Much easier (and required) at TESLA: 2820 bunches X 337 ns

Philip Burrows

FONT at **NLCTA**

170ns long train, bunched at X-band (87ps) significant charge variation (50%) along train large beam (1mm), train-train jitter O(100 microns)

2 available sections of NLCTA beampipe:

Philip Burrows

NLCTA charge variation along train

Philip Burrows

FONT1 at NLCTA: beamline

Philip Burrows

FONT1 at NLCTA: magnets

SLC dipole and post-damping ring kicker

Philip Burrows

FONT1 at NLCTA: BPM

Initial readout w. diode detectors

New button type BPM

for X-band bunch

structure

Philip Burrows

FONT1 at NLCTA: BPM processor

Read each y pickoff signal: Formed sum and difference, mixed down from X-band to baseband.

Charge normalisation: 1/sum performed w. AWG (slow) with real-time first-order correction

ALCPG Workshop, SLAC: BDIR Working Group 08/01/04

Philip Burrows

FONT1 at NLCTA: charge normalisation/feedback

Philip Burrows

FONT1 at NLCTA: kicker driver amplifier

Allows us to move 65 MeV beam by +- 1 mm

3kW amplifier:

3 planar triode

tubes;

7.5 A, 350V o/p

ALCPG Workshop, SLAC: BDIR Working Group 08/01/04

Philip Burrows

FONT1 at NLCTA: expected latency

•	Time of flight kicker – BPM:	14ns
•	Signal return time BPM – kicker:	18ns
	Irreducible latency:	32ns
•	BPM cables + processor:	5ns
•	Preamplifier:	5ns
•	Charge normalisation/FB circuit:	11ns
•	Amplifier:	10ns
•	Kicker fill time:	2ns
	Electronics latency:	33ns
•	Total latency expected:	65ns

FONT1 at NLCTA: results

10/1 position correction of 65 MeV e- beam

achieved latency of 67 ns

system tested in feed forward and feedback modes

Philip Burrows

FONT2 at NLCTA: outline

Goals of improved FONT2 setup:

- Additional 2 BPMs: independent position monitoring
- Second kicker added: allows solid state amplifiers
- Shorter distance between kickers and FB BPM:

irreducible latency now c. 16 ns

• Improved BPM processor:

real-time charge normalisation using log amps (slow)

- Expect total latency c. 53 ns: allows 170/53 = 3.2 passes through system
- Added 'beam flattener' to remove static beam profile
- Automated DAQ including digitisers and dipole control

FONT2 at NLCTA: expected latency

•	Time of flight kicker – BPM:	6ns
•	Signal return time BPM – kicker:	10ns
	Irreducible latency:	16ns
•	BPM processor:	18ns
•	FB circuit:	4ns
•	Amplifier:	12ns
•	Kicker fill time:	3ns
	Electronics latency:	37ns
•	Total latency expected:	53ns

FONT2 at NLCTA: new beamline configuration

Philip Burrows

FONT2: new front-end IF processor

Philip Burrows

FONT2: new front-end IF processor

14 channels: 2y on beamline, 6y + 6x outside

2y on beamline:

6y+6x outside tunnel:

Philip Burrows

ASTeC, Daresbury Lab 22/12/03

FONT2: synchronous demodulator PCBs

(y1-y2)/(y1+y2) w. log amps

6 boards outside tunnel:

ASTeC, Daresbury Lab 22/12/03

Philip Burrows

FONT2: new solid state amplifiers

Total drive same as last year

Amplifier pair w. shielding:

FB o/p signal into amp (0.9c):

Philip Burrows

ASTeC, Daresbury Lab 22/12/03

FONT2: new DAQ/control system

Philip Burrows

FONT2 run Nov/Dec 2003

- Nov 7-9: commissioned system of 3 BPMs and new electronics resolution measured using 'triplets': c. 15 microns
- Opportunistic runs Nov 24 Dec 13 (10 shifts) operating conditions difficult due to 8-pack + high-gradient structure tests
- Dec 3: commissioned new amplifiers, kicker, FB circuit + DAQ full system run in feed-forward and feedback modes
- Dec 9: commissioned beam flattener in standalone mode
- Dec 13: ran full system with beam flattener

Philip Burrows

FONT2: first results Nov 2003

Philip Burrows

FONT2 initial results: beam flattener

Flattener corrects **FONT2 Beam Flattener** 3 to average beam Incident Beam Average position 2 Corrected Beam position: removes 1 'static' structure 0 Position (mm) Performance bandwidth limited: -3 -4 80 MHz (AWG) -5 **30 MHz (amp)** -6 50 100 150 200 250 300 0 Time (ns)

Feedback off for illustration:

Philip Burrows

FONT2 initial results: beam flattener

Philip Burrows

FONT2 initial results: feedback mode

Philip Burrows

FONT2 crew

Philip Burrows

Ideas for further development work

- e+e- background studies in SLAC A-line
- World's smallest emittance e- beam is at KEK/ATF
- Scaling:

1 micron at ATF (1 GeV) ~ 1 nm at LC (1000 GeV)

• Beam-based feedback at ATF could be scale model for LC

Philip Burrows

Comparison of ATF with NLCTA

	NLCTA	ATF
Train length	170 ns	300 ns
Bunch spacing	0.08 ns	2.8 ns
Beam size (y)	500 mu	5 mu
Jitter (y)	100 mu	1 mu
Beam energy	65 MeV	1.3 GeV

ATF has 'right' bunch spacing and train length, and the beam is smaller and more stable than at NLCTA -> much better place for fast feedback prototypes

Philip Burrows

Possible future developments for FONT at ATF

3 suggestions:

- Stabilisation of extracted bunchtrain at 1 micron level: low-power (< 100W), high stability amplifier stripline BPM w. ~ 1 micron resolution these are exactly what are needed for the LC!
- 2. Stabilisation of extracted bunchtrain at 100 nm level: requires special BPM and signal processing useful for nanoBPM project
- 3. Test of intra-train beam-beam scanning system: high-stability ramped kicker drive amplifier very useful for LC

Development of Improved Feedbacks

• Beam angle-jitter:

correction best done near IP with RF crab cavity (needed anyway): system needs design + prototyping

• Ideally, feedback on luminosity:

bunch-by-bunch luminosity measurement would allow intra-train luminosity feedback

Philip Burrows