PEP-II Disassembly Technical Systems

PEP-II D&D Review 6-Aug-2007 S.DeBarger S.Ecklund, A.Hill, D.Kharakh, M.Zurawel

Outline

Project safety

Disassembly of technical systems

- □ Shielding
- Vac/Mechanical
- Cable trays and cables
- RF systems
- Power supplies
- Controls
- PEP-Injection
- Cost summary
- Next steps

Basic assumptions

- Only items with general reuse capability will be preserved
- No attempt to prepare a general scheule has been made
- All costs will be expressed in 2007 dollars with SLAC general rate of assigned indirect expenses (38% on labor, 5% on purchases)

Safety Concerns

It is critical that the dismantling of PEP-II is accomplished while protecting the safety of all workers and the environment.

Areas of greatest concern

- Electrical
- Hoisting/Rigging/Material Handling
- Fire Protection
- Construction/Demolition Workplace Hazards
- □ Fall Protection, Compressed Gasses
- Tracking & Management of Activated, Hazardous, & Mixed wastes

Electrical Safety

- Electrical Safety program for Final Focus Test Beam was successful. Experience from this project can be readily applied to PEP-II.
- PEP2 is much more complex than FFTB and has new challenges.
 - Conventional and experimental sources of energy are more numerous. Multiple systems (HER & LER, High- & Low-voltage) are commingled.
 - Some PEP-I cables are abandoned in cable trays and covered with PEP-II cables.
- SLAC has made good progress in identifying and labeling electrical hazards.

Davis-Bacon Act

- It is assumed that the dismantling of the PEP-II technical systems will be covered by the Davis-Bacon Act.
- Davis-Bacon covered work estimated to be 20.4 M\$
- Certain tasks which require specialized skills will likely be performed by SLAC staff.
- Davis-Bacon exempted work estimated to be 13.4 M\$, mostly in project management

Shielding Removal

- 5 IR shielding walls
- IR-8 & IR-12 bridge shielding walls
- Straight section onbridge steel & lead
- IR-2 tunnel shielding (A&B sides)
- Estimated cost 217 k\$

LER Magnet Support Raft Removal

- Remove entire rafts including captured beampipes
- Need to design/procure lifting tools
- Recover & store rod ends
- Transport from tunnel to magnet disassembly location
 - Dipole weight: 2200 lbs
 - □ Quadrupole weight: 1950 lbs
 - □ Sextupole weight: 370 lbs

LER

vacuum/mechanical removal estimated cost 1,695 k\$

HER Magnet Removal

- Quad rafts to be removed with captured beampipes
- Dipole chambers to be removed separately from dipole magnets
- Need to design/procure lifting tools
- Recover & store rod ends
- Transport from tunnel to magnet disassembly location
 - □ Dipole weight: 14,750 lbs
 - □ Quadrupole weight: 4,130 lbs
 - □ Sextupole weight: 370 lbs
 - □ Dipole chamber weight: 650 lbs
- HER vacuum/mechanical removal estimated cost 1,615 k\$

Vacuum Pumps

Vent to dry nitrogen
Blank off for storage
Protect HV feedthrough
Weight of pumps range
from 9 lbs. (25 l/s) to
294 lbs. (500 l/s)

Also recover valves, gauges, & Ti Sub Pumps (TSPs)

Beam Position Monitors (BPMs)

- Save flanged button/feedhrough assemblies
 - ~900 units @ \$400 each
 - Handle & store as UHV components
- Cut and discard cables
- FIBs, processors have no reuse
 - □ PEP-II specific designs
 - Technology has progressed since mid 1990's

Interaction Region

Previously disassembled in 2002 for BaBar SVT change

Portion of 2002 IR/BaBar Schedule

	Task Name	Duration	Start	Finish	r	May J	lun Ji	ul Aug	Sep
205	Destinations and a	25 4-1-1-	Mar. 7/4/00	E.:: 7/E/00	42128	51219282	191@3Q	7 421284 1 8	291 8 922
200	Preliminary work	3.5 days	Mon //1/02	Fri //5/02					
210	BABAR WORK, PHASE 1 (Pre ST Removal)	69 days	Mon 7/1/02	Mon 10/7/02					
369	□ Remove Backward Raft	29.8 days	Fri 7/5/02	Thu 8/15/02				1.1.10.1M	
370	Disconnect Backward PEPII Services	4.5 days	Fri 7/5/02	Thu 7/11/02				7	
371	Disconnect TC Cables	0.5 days	Fri 7/5/02	Fri 7/5/02				PEP,S.Ecklu	INđ
372	Disconnect Power Cables	2 days	Fri 7/5/02	Mon 7/8/02				PEP,PC	
373	Secure Cables to Raft	0.5 days	Tue 7/9/02	Tue 7/9/02				PEP,PC	
374	Drain, Disconnect & Plug Water Cooling Systems	2 days	Tue 7/9/02	Thu 7/11/02				PEP,MFD	
375	Disconnect Backward SVT Services	4.35 days	Fri 7/5/02	Thu 7/11/02				•	T
376	Drain, Flush and Disconnect Cooling System	0.25 days	Fri 7/5/02	Fri 7/5/02			ŀ	PEP,SVT To	:ch
377	Disconnect Dry Air Hoses	0.1 days	Fri 7/5/02	Fri 7/5/02				PEP,SVT TO	;ch
378	Disconnect White Cables at Front of Raft	0.5 days	Fri 7/5/02	Fri 7/5/02				PEP,SVT TO	*ch
379	Disconnect White Cables at MUX Racks	3 days	Fri 7/5/02	Wed 7/10/02				PEP,SVT 1	ech
380	Secure Cables at Raft	0.5 days	Wed 7/10/02	Thu 7/11/02				PEP,SVT	lech .
381	Disconnect Backward DC Services	5.7 days	Fri 7/5/02	Mon 7/15/02				•	
395	+ Disconnect Backward Vacuum	2 days	Wed 7/10/02	Fri 7/12/02					
400	Disconnect ST and Raft, Remove Backward Raft	23.25 days	Mon 7/15/02	Thu 8/15/02					
413		8.75 days	Fri 7/5/02	Wed 7/17/02				▼	
430		15.3 days	Tue 7/9/02	Tue 7/30/02					
457	Replace Q2 Chamber on Forward Raft	16.81 days	Tue 7/30/02	Thu 8/22/02					PEP
459	Install supports and remove Support Tube	2.8 days	Mon 7/29/02	Thu 8/1/02					
469	Prepare to close Forward Doors	1.5 days	Thu 8/1/02	Mon 8/5/02					
475	BABAR WORK, PHASE 2 (ST Removed)	67.05 days	Fri 8/9/02	Wed 11/13/02					
640	* ST Repairs	47.9 days	Thu 8/1/02	Wed 10/9/02				-	
651	OPEN FORWARD DOORS	1.5 days	Tue 10/8/02	Wed 10/9/02					

Schedule contains 794 task and roll-up items

Forward Raft Removal

BaBar doors opened, cables and services disconnected to permit access

Forward Raft Removed

Support Tube Removal

Carbon fiber center section encloses SVT

Support Tube Disassembly

- Three weeks to remove SVT from support tube
- PEP permanent magnets require special handling during disassembly and storage
- Disassembly and disposal of beryllium central beampipe will require coordination with E,S,&H experts

Photo courtesy of Peter Ginter

Cable Trays-FFTB Experience

- FFTB removed in 2006
- Cable plant deenergized, "arterial cuts" made, then cable tray was cut into manageable sections in situ and removed
- 645 feet of beamline, cable trays, & housing removed
- Costs (SLAC + Davis-Bacon contractor) 522 k\$ or ~ \$809/foot

Cable Trays in PEP

- Generally 4 trays (arranged in a 2 x 2 pattern) throughout tunnel
- Each tray much more heavily loaded than FFTB
- Ceiling mounting adds to difficulty of removal
- Using FFTB rate as a baseline:
- \$809/ft x 7200 ft (PEP circumference) x 2.5 (factor for greater amount of PEP-II trays per linear foot) = ~ 14.526 M\$

RF Systems

Many items identical to SPEAR RF Major components to recover: □ Klystrons Circulators □ Waveguide Low Level RF Water racks

15 stations to dismantle and store

RF Systems

- Components designed for transport on supports
- LLRF can be transported in existing racks
- Recent experience with installation gives good confidence in disassembly plans
 - Disassembly estimated to require 220 days and 966 k\$.
 - Parallel work possible (Components installed in three PEP Regions)

RF Removal Schedule

	0	Task Name	Duration	Predecessors	Remaining Cost	Resource N	Jul 22, '07
1		□ PEP RF Removal and Storage	220 days		\$699,791.52		
2		Coordinate PEP RF Removal	220 days		\$114,470.40	KLYC	
3		Provide UTR support	220 days		\$151,307.20	CEFE	
4		□ Region 8 (3 Stations)	49 days		\$120,266.60		
5		LOTO power, water, pressurized air	0.5 days		\$1,003.46		
6		Remove the fuses from 12kv switchgear	0.5 days		\$448.00	CEFPN	10%]
7		Loto RF system water pumps on pad	0.5 days		\$448.00	CEFPN	%]
8		LOTO pressurized dry air system	0.25 days		\$107.46	KLYT	
9		Remove 3 klystrons from B685 and store	4 days	5	\$5,464.98		
10		Disconnect water	1 day		\$896.00	CEFPN	200%]
11		Disconnect HV cable	0.5 days		\$520.32	PEM TE	200%]
12		Disconnect waveguide	0.5 days		\$429.84	KLYT[2	1
13		Disconnect LLRF cables	0.25 days		\$107.46	KLYT	
14		Move klystrons to storage	1 day	10,11,12,1	\$1,792.00	CEFPN	IR[400%]
15		Store klystrons under vacuum	2 days	14	\$1,719.36	KLYT[2	KLYT[200%]
16			5.5 days	9	\$5,678.72		
21		Remove 3 water racks from B685 and store	12 days	28	\$10,752.00		
28			20 days	16	\$21,140.80		
35		Remove Cabling and trays from B685	40 days		\$35,840.00		
42			30.5 days		\$32,395.28		
47			9 days		\$7,991.36		
52		Region 12 (6 Stations)	66 days	4	\$156,873.66		
53			1 day		\$1,451.46		
57		Remove 6 klystrons from B725 and store	8 days	53	\$10,033.96		
C.4					A44 055 44		

RF High-Voltage Power Supplies

- 15 HVPSs installed in PEP (one for each Klystron)
- Secondary containment required if stored while filled with oil
- Cost to disassemble, transport, & store estimated at 689 k\$

Power Supplies

- Experience from recent FFTB work
- Similar to Electrical Work Plan "FFTB Beam Line Magnet Disconnection for Removal ...", CPE 0129
- Rack mounted power supplies (321)
 - □ Most use BITBUS interface
 - □ Identical to SPEAR power supplies
 - MCORs can replace existing SCORs deployed in many areas at SLAC
- Free standing power supplies (15)
 - $\hfill\square$ Can all be used as spares for LCLS

Power Supplies

- Experience from recent FFTB work
- Similar to Electrical Work Plan "FFTB Beam Line Magnet Disconnection for Removal ...", CPE 0129
- Rack mounted power supplies (401)
 - Most use BITBUS interface
 - Identical to SPEAR power supplies
 - MCORs can replace existing SCORs deployed in many areas at SLAC
- Free standing power supplies (35)
 - Can all be used as spares for LCLS
- Estimated cost 955.2 k\$

PPS Systems

- Beamline devices (stoppers, current monitors, ...) to be preserved
- PPS keybanks to be recovered for use at other locations at SLAC

Feedback systems

- Beamline devices to be preserved
- Power amplifiers (10 @ 150 k\$ ea. purchase price) should be preserved.
- Other system elements to be discarded
 - Technology
 has evolved
 - Components no longer available

Vacuum System Controls

- Most items have application at other projects at SLAC
 - Ion pump power supplies (188 total)
 Vacuum gauge controllers (142 total)
 Valve controllers (14 total)
 - \square Valve proumatic panels (61 to
 - □ Valve pneumatic panels (61 total)

Computing/Controls/Network Infrastructure

- Equipment to be preserved as useful for other projects at SLAC
 - □ Wireless Access Points (~10)
 - □ Public switches (6)
 - □ VME crates (4)
 - □ VXI crates (15)
 - □ Allen Bradley (15)
 - □ GPIB (~5)
 - □ Solaris servers (3) and Linux servers (2)
- Accelerator switches are obsolete, but can be removed for a trade-in rebate (16)
- Alphas and RMX (eg. PR*) micros to be retired
- Voice trunk cabling goes through the tunnels to each IR hall. There will be a major impact to the CEH voice trunk cables (ties into the IR-2 hall) and the Alpine Gate (ties in the IR-4 hall).
- Fiber-optic cabling is routed through conduits not in the PEP tunnels and should not be impacted.
- Controls systems removal estimated cost 175.5 k\$

PEP Injection Lines

- Located in the Accelerator Housing
- Extract & transport e⁻ and e⁺ from the accelerator to PEP
- Much lower equipment density than that found in the PEP rings
- e⁻ transport 7200 ft., e⁺ transport 8500 ft.
 - NIT & SIT lines add ~730 ft to each line
- Existing drift tubes of up to 150 feet in length were assembled in place, will have to be cut to remove
- Magnets, BPMs, bellows, to be recovered
- In general, a single 9" x 9" cable tray to be removed
- Transport lines could have use in other, non-PEP programs

PEP Injection Complications

- Removal activities can only proceed when the Linac is not in operation
- Congestion increases where beamlines diverge an head to PEP
 - Equipment removal in this area has a high risk of collateral damage to accelerator components
- Beam switchyard (BSY) and Tune-Up Dumps present a radiological challenges
 - High radiation and contamination areas

Storage Space

- Existing PEP tunnel of 79,200 sq. ft. is filled with beamline components, cable trays, supports, & conventional services to a moderate density
- PEP support buildings house many racks of recoverable electronics and power supplies
- There will be a need for interim component disassembly space
- There will be a need for extended storage space for recovered components 32 of 35

Project Management

- Area Managers (3 F.T.E.)
- Technical System Managers
 - □ Power Conversion (2 F.T.E.)
 - □ RF System (1 F.T.E.)
 - □ Vacuum/Mechanical System (3 F.T.E.)
 - □ Controls Infrastructure (1 F.T.E)
- UTRs & Contractor management (15% of awarded contract value)
- Safety Oversight (6 F.T.E.)

Project Cost Summary

	PEP Rings	PEP-Injection	Total
Vac/Mech	3,310.2	1,003.5	4,313.8
Controls	131.9	43.6	175.5
RF Systems	1,656.1	0.0	1,656.1
Shielding Removal	217.0	0.0	217.0
Power Supplies	761.1	194.1	955.2
Cables & Cable Trays	14,526.0	2,663.1	17,189.1
Subtotal	20,602.4	3,904.3	24,506.7
Project Oversight			8,951.4
Subtotal			33,458.2
50% Contingency			16,729.1
Project total			50,187.2

Next steps

Secure guidance on critical topics

- Identify projects which could reuse surplus PEP equipment, verify interest with project management
- Determine fate of PEP-Injection lines
- □ Should project be optimized for cost? Duration? Non-interference with other programs?
- □ Storage locations, disposal requirements
- Investigate technical systems further, identify components for reuse/spares
- Investigate cable removal numbers from FFTB experience. As projected, these represent 34% of the estimated costs to remove the PEP technical systems
- Prepare schedule including task dependencies
- Prepare project management tools (labels, travelers, EWPs, H&R Lift Plans, ...)