
MAID and Beyond: Filling the Storage Gap

Aloke Guha, Ph.D. CTO, COPAN Systems Inc.

Data Management Workshop SLAC March 16, 2004

Pricing Trends: Disk and Tape

"The difference in price between ATA/SATA and SCSI/FC is at least 50% on a per-GB basis" Peter Kastner, Aberdeen Group

COPAN SYSTEMS

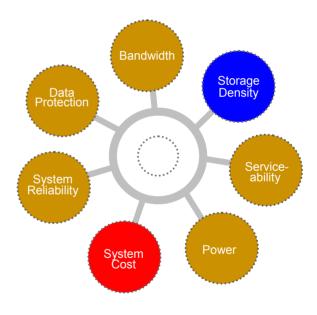
Storage System Cost vs. Media Cost

- Storage system \$/GB far exceeds media \$/GB
- Cost Efficiency: <u>Media Cost</u> Storage System Cost
 - Disk Example
 - 250 GB SATA ~\$1/GB vs Storage: \$5-\$15/GB^{#1}
 - Cost Efficiency: 0.07 0.2
 - Tape Example
 - 200 GB LT02 media ≤ \$0.5/GB vs Storage: \$0.75-\$3.5/GB^{#2}
 - Cost Efficiency: 0.14 0.67

Traditional disk systems 2x-3x higher cost than tape^{#3}

- ^{#1} Fred Moore, Horison Strategies, October 2003
- ^{#2} Native uncompressed capacity: cost/GB depends on ratio of tape cartridges to drives, in range of 20:1 80:1
- ^{#3} Assume same compression on streaming I/O for disk or tape

Scaling and Cost Challenges

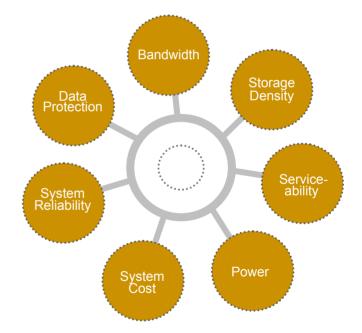

Replacing FC with ATA not sufficient

- Density Scaling
 - Power
- Reliable Operation
 - Heat
 - Vibration

Need fundamentally different approach

- Minimize "Slot" Cost

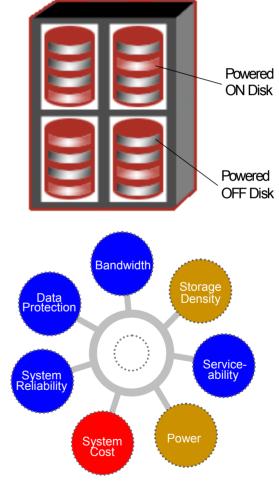
Slot Cost = <u>(System Cost – Media Cost)</u> #Drives


An Application-Specific Approach

Needs of secondary storage

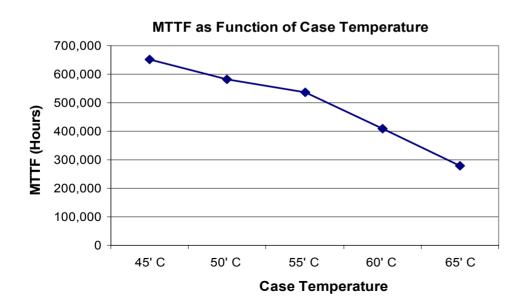
- Mostly sequential I/O
- Performance: MBs not IOPs
- Access: ms-secs
- Optimize architecture
 - No need for large RAM cache
 - No need for non-blocking interconnect
 - No need to access all data at all time
 - High Capacity/Bandwidth ratio

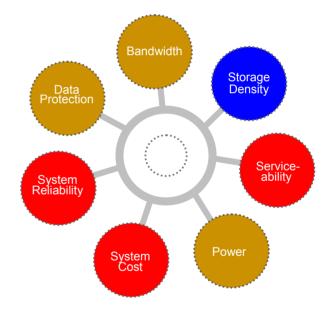
Constraints


- Data Protection
- System Reliability
- Serviceability
- Power

Power-Managed Disk (MAID) and Beyond

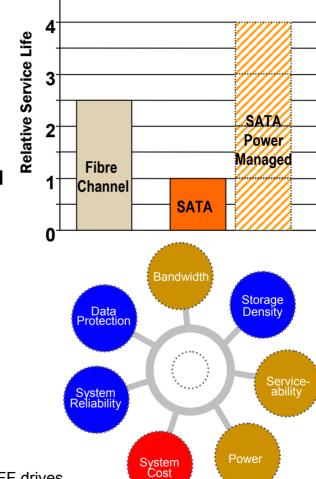
- Large number of power-managed drives
 - Infrequent access \Rightarrow > 50% drives powered OFF ^{#4}
- Scale Benefits
 - Lower heat and vibration
 - Higher service life
- Cost Benefits: Lower "Slot Cost"
 - Cost/GB \Rightarrow 1/3 to 1/4 std. RAID systems
 - Lower management cost from consolidation
- Beyond MAID: Application-Specific Design
 - Reduce system overhead
 - Optimize for required features




^{#4} Colarelli and Grunwald, The Case for Massive Arrays of Idle Disks (MAID), Usenix FAST 2002

Storage Capacity versus Drive Life

- Drive Packing Density
 - -0(1000) drives = 250TB+
- Interconnect Architecture
 - Connectivity and Bandwidth
- Drive Life as function of temperature



Extending Service Life

- Effective drive life
 - Increases with decreasing duty ratio#5
- Manage start stops
 - < 40,000 over service life
 - Power-ON cycle matched to application need
- \uparrow Service life \Rightarrow \uparrow data reliability
- Use storage density to increase availability
 - Many spares to replenish failed drives
 - Rebuild data transparently

Power managed duty cycle = 25%

^{#5} Power cycle duty ratio = # of powered-ON drives/# of powered-OFF drives

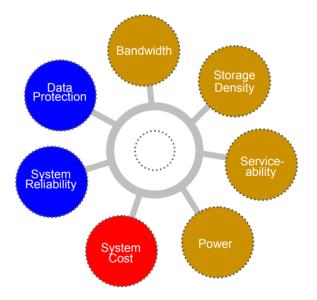
Expected Contact Start Stops

- MAID system bandwidth/capacity limits CSS to 3% of max over 5 yrs
- Tape archives: ave #mounts/used volume limits CSS to <5 % of max over 5 yrs^{#6}

	Industry	Volumes Used	Daily #Mounts/Volumes Used		
			Average	Max	Median
1	Telco	373	0.0	0.1	0.0
2	Telco	1,015	0.1	0.4	0.0
3	Telco	688	0.1	0.5	0.0
4	Telco	1,189	0.0	0.0	0.0
•	• •				•
10	Financial	835	1.6	4.2	2.1
11	Financial	10,677	0.1	0.3	0.2
12	Financial	2,061	0.1	0.2	0.1
•	• •		• •		•
33	Utility	278	2.6	4.9	3.5
34	Govt	3,393	0.4	0.7	0.5
35	Govt	84	0.1	0.4	0.1
•	• •	• • •	• •	•	• •
	Average	1,122	0.6	1.1	0.6

Average # Start-Stops over 5 year operation

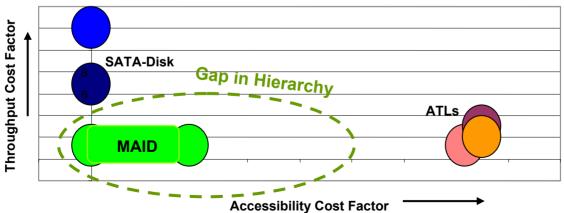
	MAID System Capacity (TB)			
MAID Bandwidth (TB/hr)	150	200	250	
2	584	438	350	
3	876	657	526	
4	1168	876	701	


Typical Specified Limit: 40,000

^{#6} Source: FileTek - data from 43 archives on tape: Volumes_Used excludes tape volumes not allocated in library

Data Reliability and Data Integrity

- Proactively monitor drive health
 - Copy data onto spare before drive failure
- System data integrity mechanisms (ECC)
- Increased data reliability
 - 50% of drive data recovered before failure
 - \Rightarrow 4X data reliability
- Data "revitalized" before drives fail
 - Reduces vulnerability as disks get bigger!
- Revitalized Data ⇒ Longer Data Retention



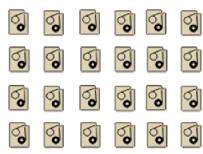
Increasing Performance

- Fraction of data on-line: 10X tape
- RAID processing and Interconnect Bandwidth
- Performance-Cost Metrics
 - Throughput Cost Factor = (Cost/GB) (TB/hr)
 - Accessibility Cost Factor = (<u>Cost/GB</u>) (1/Time to First File)

Other Cost Components

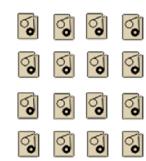
- Technology Refresh
 - 36 CFR 1234.30 (g) (3): annual sampling, 10-yr replacement
 - Upgrade of tape media
- Data Protection
 - Tape backup and duplex vs RAID
- Storage Management
 - Primary vs archive storage workload
- Software and Maintenance
- Media management
 - MAID as native disk has application flexibility

Filling the Storage Gap



FC Disk 10 TB, ms

FC Disk


<10 TB, ms

Tape Library 100s TB, sec-min

Vaulted Tape >1 PB, hrs-days

Tape Library 100 TB, sec-min

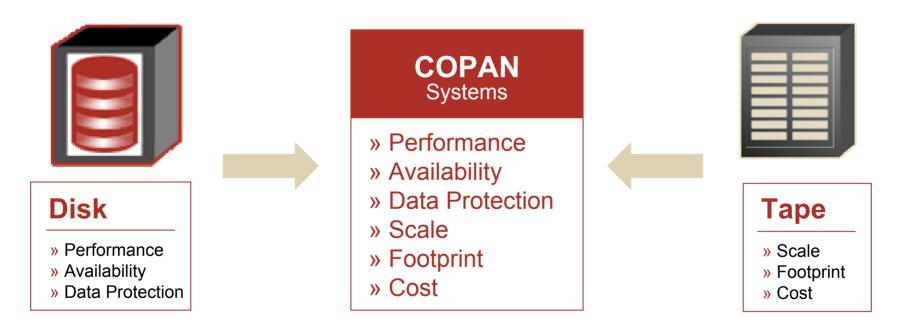
Vaulted Tape 1 PB, hrs-days

- Increases online data by 10X
- Higher performance and data reliability

MAID

100s TB, ms-sec

Lower long-term data management cost



Conclusions

- Application-tuned MAID architecture for parity with tape cost
- Optimize design for storage system for minimum slot cost
 - Storage density and capacity
 - System reliability
 - Data protection and reliability
 - Performance
 - Serviceability
- MAID fills the gap in the storage hierarchy

Best of Both Worlds

Massively scalable enterprise storage solutions with the reliability and performance of disk at the scale and cost of tape.

COPAN SYSTEMS

Thanks

Contact: aloke.guha@copansys.com

http://www.copansys.com