Modeled pulse function for waveform analysis using DRS4

Andriy Zatserklyaniy
University of Puerto Rico

ESTB Workshop 2011
SLAC
DRS4 digital evaluation board for timing studies in Fermilab Meson Test Beam and SiDet facilities

High-speed Digitization Readout of Silicon Photomultipliers for Time of Flight Positron Emission Tomography,

FERMILAB -TM-2487-PPD, February 2011
DRS4 Digital Oscilloscope Board

Sampling frequency: from 2 GSa/s to 5 GSa/s
4 channel, possibility of external trigger
USB interface, low energy consumption (power from USB)
Firmware improvements in v.3
Designed and manufactured in PSI (Zurich, Switzerland)
Apply DRS4 to improve time resolution

- TOF on Fermilab Meson Test Beam
- CMS Forward proton detector
- TOF PET applications

Fermilab MTBF 2010

- MCPPMT Photek 240: 14 ps
- Photek-SiPM: 24 ps
- ORTEC electronics ($3k/ch)

New approach:
SiPM + DRS4
Examples of the data: rise time varies from 2 ns to 50 ns
Test beam, Cherenkov, clipping capacitor 10 pF, 5 GSa/s
LSO crystal, 60Co source, 2 GSa/s
Some of methods which are currently in use

Different approaches:
- simulation of the Constant Fraction Discriminator
 - complicated procedure of parameter tuning
 - dependence of pulse height and sampling frequency
- Mean Pulse Model (use average of ~10k pulses as an template to fit the signal)
 - good performer but needs templates
- fit straight line to the leading edge
 - simple, but
 - the leading edge is far from the straight line
We model of SiPM as a charging/discharging capacitor

To take into account finite width of light pulse and clipping capacitor we parametrize the pulse function by two time constants: rise time τ_1 and discharge time τ_2:

$$p(t) = (1 - \exp(-t/\tau_1)) \cdot \exp(-t/\tau_2)$$

To describe LSO crystal data we convolute the pulse function with scintillator decay function $\exp(-t/T)$

To take into account signal jitter we convolute pulse function with Gaussian resolution function
Fit pulse function to the data

Needs reasonable initial value for free parameters

Two-stage fit procedure:
- fit the whole pulse to find position of the leading edge
- refit the leading edge region
Examples
Beam test data, STMicroelectronics SiPM, Cherenkov light, clipping capacitor 10 pF + amplifier
black line: global fit, red line: refit
(parameters which was fixed for refit have 0 error)
LSO crystals, 22Na source
Hamamatsu MPPC
clipping capacitor 10 pF + amplifier
black: global fit, red: refit
NB fluctuations on the tail

grsig_evt_7_ch_4 l=33.1 $\chi^2=1.6$

<table>
<thead>
<tr>
<th>χ^2</th>
<th>130.4 / 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>-2048 ± 20.1</td>
</tr>
<tr>
<td></td>
<td>32.36 ± 0.3077</td>
</tr>
</tbody>
</table>
STM SiPM, picosecond laser, low light

200 ns pulse, about 4 photoelectrons
Work, in progress. Some results.

Hamamatsu MPPC, 22Na, LSO
time resolution with skew correction

STM, no clipping, picosecond laser

Time resolution vs Npe
Summary

Pulse function approach seems promising for a wide range of applications.

Provides uniform description for different setups
- fast Cherenkov signal with 2 ns rise time
- LSO crystals with ~50 ns rise time
- SiPM and MCP PMT

Work in progress in preparation to coming beam test