Laser Manipulation of the e- Beam

Alexander Zholents, LBNL

ESASE & synchronization

few-cycle modulation & attosecond x-rays

Science Drivers for Hard X-Ray Upgrades to LCLS

SLAC NATIONAL ACCELERATOR LABORATORY

July 29, 2009

Light interaction with relativistic electron^{*)}

Energy modulation of electrons in the undulator by the laser light

Electron trajectory through undulator

Magnetic field in the undulator FEL resonance condition aser wavelength

$$\lambda = \lambda_u / 2\gamma_z^2$$

Undulator period

While propagating one undulator period, the electron is delayed with respect to the light on one optical wavelength

Light interaction with relativistic electron (2)

z/λ

 The FEL output is dominated by the radiation coming from the part of the electron bunch affected by the laser

More uniform x-ray output one can obtain using modulating laser pulse with a flat top

Absolute synchronization of the x-ray pulse to the pump laser source

Electron bunch arrival time jitter relative to laser pulse $\sigma_{\Lambda t} \sim 50$ fs

A schematic of the LCLS with ESASE

Pump-probe experiment concept

After "fact" time jitter measurement between laser pump and x-ray probe Near IR pump

Gain length*)

*) Ming Xie formulas

Taper should be used to compensate energy chirp induced by space charge, Note $I_{\text{peak}} \sim 20 \text{ kA}$

Radiation dominance due to energy gradient*)

Energy gradient can be matched with undulator taper to provide the dominance of the radiation from selected group of electrons –

a different way to tied up x-ray signal to the modulating laser

*) Saldin, Schneidmiller, Yurkov

Problem with the slippage of the radiation with respect to the electron pulse

SASE: saturation requires ~ 1000 undulator periods:

a) Slippage length for hard x-rays, i.e. λ =0.1 nm

1000 x 0.1 nm = 100 nm -> 330 asec

b) Slippage length for soft x-rays, i.e. λ =1 nm

1000 x 1 nm = 1000 nm -> 3.3 fs

This is about one period of the modulating laser

Single cycle optical pulses and attosecond x-ray pulses

Attosecond pulse generation via electron interaction with a few cycle carrier-envelop phase stabilized laser pulse

Basic idea: Take an ultra-short slice of electrons from a longer electron bunch to produce a dominant x-ray radiation

Enabling technology

Requires measurement & control of ϕ

Energy modulation produced in the electron bunch during interaction with a \sim 1 mJ, 5 fs, 800 nm wave length laser pulse in a two period wiggler magnet with *K* value and period matched to FEL resonance at 800 nm

Possible implementation at LCLS

Summary

Lasers can play a major role at the LCLS

- assist in synchronization for pump-probe experiments
- enhance peak x-ray power
- assist in generation of attosecond x-ray pulses

What is needed?

- laser, up to 50 fs and up to 0.5 mJ, 120 Hz + wiggler, 9 periods, period length 25 cm
- CEP laser, 5 fs and up to 1 mJ, 120 Hz + wiggler, one period, period length 80 cm

Thank you for your attention