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Light interaction with relativistic electron”

Energy modulation of electrons in the undulator by the laser light
B= Bosin«uz)

Magnetic field in the undulator

FEL resonance condition
.aser wavelength
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Undulator period
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While propagating one undulator
period, the electron is delayed
with respect to the light on one
optical wavelength

*) Motz 1953; Phillips 1960, Madey 1971



Light interaction with relativistic electron (2)

Magnetic chicane
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 The FEL output is dominated by the radiation coming from
the part of the electron bunch affected by the laser

Peak current
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Peak power, P/P,

A fragment of the x-ray pulse

More uniform x-ray output one can obtain using modulating laser pulse with a flat top



Absolute synchronization of the x-ray pulse to the pump laser
source

Laser pulse arrival time, t* — pump laser pulse
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Electron bunch arrival time jitter relative to laser pulse ¢, ~ 50 fs

1 Laser pulse
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X-ray pulse




A schematic of the LCLS with ESASE
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Laser power, (ul)

Laser:

Wavelength: 800 nm

Pulse width, FWHM intensity: 20 fs
Rayleigh length : 35 cm (W>>g,)
Pulse energy: up to 0.5 mJ
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Laser ¥~~~ New elements

Wiggler:
Period: 25 cm
Number of periods: 9

Wiggler parameter, K=31.5
Peak magnetic field: 1.35 T




Pump-probe experiment concept

X-ray probe pulse
Laser excitation pulse \

detector _ _
‘ L?;sgtgr e Control/measure of At with a
resolution better than 100

attoseconds is desirable

After “fact” time jitter measurement between laser pump and x-ray probe
Near IR pump

bunched at optical wavelength second

harmonic
correlator

=3 one period
£ isochronous wiggler
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— e wiggler radiation,

X-rays ~0.5 GW




Gain length, (m)

Gain length?

A=1.5 A, emit=0.6 um, 6.=0.01%

A=0.5 A, emit=0.4 um, 6¢=0.01%
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*) Ming Xie formulas

Taper should be used to compensate energy chirp induced by space charge,
Note |
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Radiation dominance due to energy gradient”
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Energy gradient can be matched with undulator taper to
provide the dominance of the radiation from selected group
of electrons —

a different way to tied up x-ray signal to the modulating
laser

*) Saldin, Schneidmiller, Yurkov



Problem with the slippage of the radiation with respect to
the electron pulse

SASE: saturation requires ~ 1000 undulator periods:
a) Slippage length for hard x-rays, i.e. A=0.1 nm
1000 X 0.1 nm = 100 nm -> 330 asec
b) Slippage length for soft x-rays, I.e. A=1 nm
1000 x 1 nm = 1000 nm -> 3.3 fs

This i1s about one period of the modulating laser



Single cycle optical pulses and attosecond x-ray pulses



Attosecond pulse generation via electron interaction
with a few cycle carrier-envelop phase stabilized
laser pulse

e-beam ~ 100 fs

n E(t ” ”

T

Laser pulse ~ 5 fs Small jitter in the electron bunch arrival
time is not important — good for pump-
probe experiments using variety of pump
sources derived from initial laser signal

A

Basic idea:
Take an ultra-short slice of electrons from a longer
electron bunch to produce a dominant x-ray radiation
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Requires measurement & control of ¢



Energy modulation produced in the electron bunch during
Interaction with a ~1 mJ, 5 fs, 800 nm wave length laser
pulse in a two period wiggler magnet with K value and
period matched to FEL resonance at 800 nm
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Possible implementation at LCLS

3) Bunching and

diagnostic chicane

LINAC
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1) 2) One period wiggler
CEP laser pulse. 2.=80 cm
L=800 nm, 1 mJ,5fs
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Lasers can play a major role at the LCLS
e assist in synchronization for pump-probe experiments
e enhance peak x-ray power

e assist in generation of attosecond x-ray pulses

What is needed?

 laser, up to 50 fs and up to 0.5 mJ, 120 Hz + wiggler, 9
periods, period length 25 cm

e CEP laser, 5fsand up to 1 mJ, 120 Hz + wiggler, one
period, period length 80 cm



Thank you for your attention
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