Self-seeding at 1.5 Å and Harmonic Generation

Juhao Wu
LCLS Physics / SLAC
July 29, 2009
Two-stage self-seeding to reduce the FEL bandwidth

- Details of LCLS electron bunch and FEL
- Comparison of single undulator case with the two-stage case

Energy chirped electron bunch can possibly generate ultra-short FEL pulse in this configuration

Possible third harmonic at 0.5 Å as one of the extension of this configuration
LCLS SASE FEL Parameters

Electron current profile entering the undulator

![Graph showing electron current profile](image-url)
Slice emittance entering the undulator

Slice Emittance small \rightarrow
Gain Length Short
LCLS SASE FEL Parameters

FEL power along the undulator

Saturation early with power on order of GW
LCLS SASE FEL Parameters

FEL bandwidth along the undulator

Bandwidth on order of $1E-3$
LCLS SASE FEL Parameters

FEL temporal profile at 60 m

![Graph showing FEL temporal profile at 60 m]
LCLS SASE FEL Parameters

FEL spectrum at 60 m

![Graph showing FEL spectrum at 60 m]
Transform limited

For a Gaussian photon beam

\[\sigma_\omega = \frac{1}{(2\sigma_t)} \]

- LCLS electron bunch flat top, \(\sigma_z \sim 10 \, \mu m \)
- Transform limited \(\sigma_\omega / \omega_0 \sim 2E-06 \)

Room to improve the coherence \(\rightarrow \) bandwidth reduces by 2 order of magnitude (?)
Two-stage FEL with monochromator

Fig. 3. The principal scheme of a single-pass two-stage SASE X-ray FEL with monochromator.

Two-stage FEL with monochromator

Seeding the second undulator vs. single undulator followed by x-ray optics

– Power loss in the monochromator is recovered in the second undulator (FEL amplifier)

– The shot-to-shot FEL intensity fluctuation reduced due to the nonlinear regime of the FEL amplifier

– The peak power after the first undulator is less than the saturation power, the damage to the optical elements is reduced

Possible Monochromator

- J. Hastings suggested monochromators as Si(111), Si(220), and Si(444)
 - Si(111) path length difference (PLD) 3 mm, bandwidth 10^{-4}
 - Si(220) PLD 4.7 mm, bandwidth 5×10^{-5}
 - Si(444) PLD 12 mm

- Assume FEL (self-seed) into the second part of the undulators
 - Peak power only 10 MW
 - Light pulse longer than the electron pulse
FEL power along the undulator

Saturation early with power on order of GW
LCLS SASE FEL Parameters

FEL temporal profile at 40 m
LCLS SASE FEL Parameters

FEL spectrum at 40 m

![Graph of FEL spectrum at 40 m with FWHM 10^-5 highlighted]
Two-stage chirp FEL

- Energy chirped electron bunch \rightarrow FEL from the first undulator will be frequency chirped
- Through the monochromator, only part of the FEL will propagate through due to the time-frequency correlation
 - Control of the radiation-pulse duration
 - Stabilize the shot-to-shot fluctuation of the central wavelength

Two-stage chirp FEL

Fig. 1. Schematic of chirped-beam two-stage FEL for short-duration x-ray generation.

Under- and Over-compression

Phase space
- Under-compressed case — central part is flat
- Over-compressed case — central part is quite steep
Under- and Over-compression

Current profile

- Under-compressed case — double-horn — horns: high peak current, high emittance, high energy spread
- Over-compressed case — more or less Gaussian — central part: high peak current, low emittance, low energy spread
Under- and Over-compression

Example: over-compress with 2.5 kA
Harmonic Generation

With a Self-seeding cleaned up 1.5 Å FEL, one can consider Harmonic Generation
- Open gap for harmonic generation
- Same LCLS measured electron parameters
LCLS SASE FEL Parameters

FEL power along the second 1.5 Å undulator

Not looking for Gain, simply generate bunching at 1.5 Å
LCLS SASE FEL Parameters

Bunching factor along the second 1.5 Å undulator

Not looking for Gain, simply generate bunching at 1.5 Å
LCLS SASE FEL Parameters

FEL power along the 0.5 Å undulator

GW level 0.5 Å FEL
LCLS SASE FEL Parameters

Bunching along the 0.5 Å undulator

![Graph showing bunching along the 0.5 Å undulator with a GW level 0.5 Å FEL annotation.

July 29, 2009
LCLS Upgrades Science Drivers
Juhao Wu, LCLS Physics
Summary

- LCLS excellent electron beam quality leads to short gain length, early saturation. This makes possible to add more functions.
- Two-stage FEL with monochrator reduce the bandwidth from 1×10^{-3} to a few 1×10^{-5} with similar peak power \rightarrow increase the brightness.
- With energy chirped electron beam, it is possible to select part of the pulse \rightarrow ultra short FEL down to femtosecond or even attosecond.
- Also possible to get third harmonic at 0.5 Å.
Thanks for your attention!

Special thanks to:

P. Emma, Y. Ding, Y. Feng, J. Frisch, J. Hastings, Z. Huang, B. Jia (Duke), H. Loos, A. Lutman (FERMI), H.-D. Nuhn, C. Pellegrini (UCLA), S. Spampinati (FERMI), J. Welch ……