

THz Pump Beam for LCLS

Henrik Loos

LCLS Hard X-Ray Upgrade Workshop July 29-31, 2009

Coherent Radiation Sources THz Pump Timing THz Source Performance

LCLS Layout

Use LCLS electron beam to generate synchronized THz pulses for x-ray experiments

THz Sources

Ultra-short electron beam carries broadband electro-magnetic field from DC to ~10um

- Extract coherent radiation at any beam obstruction
 - Foil -> Transition Radiation (CTR)
 - Annular mirror -> Diffraction Radiation (CDR)
 - Bend magnet -> Edge Radiation (CER)
- THz pulse with radial polarization

THz Timing

- Pump THz pulse needs to be ahead of x-rays
 - THz from same electron bunch requires delay of x-rays
 - Generate THz from different electron bunch
 - In present accelerator layout use 2nd bunch 10s to 100s ns ahead of lasing bunch within same accelerator RF pulse
 - Spoil beam quality of pre-bunch to prevent lasing
 - THz pulse well synchronized with x-ray (« 50 fs) due to same drive laser pulse & RF pulse
- Generate THz from different accelerator
 - If first 2 km of SLAC linac are used for LCLS
 - RF timing can be set independently from existing LCLS accelerator
 - Still good synchronization with x-ray due to same RF master clock

Use spend beam downstream of undulator in dump area

- THz frequency range 1 10 THz
- Spectral range 30 300 cm⁻¹
- Radiation source
 - Diffraction radiation has high frequency cutoff
 - Transition radiation needs thin foil
 - Edge radiation from dipole non-interceptive
- Energy 13.6 GeV, γ = 26700
- Radiation source size clipped by beam pipe
- Near field calculation for $\lambda > 10$ nm

THz Pump LCLS Hard X-Ray Upgrade

Peak of radiation at radius proportional to wavelength

For 1 decade spectral range need mirror aspect ratio of 30:1

THz Pump LCLS Hard X-Ray Upgrade

Transport from Dump area to Near Hall ~100 m
Periodic focusing with 10 m drifts, 8" optics
Transmission > 60% above 1 THz (only from diffraction)

- Simulation for 1 nC, 60 fs, focus after 5 m lens
- THz pulse resembles ebunch profile after ~1 ps low pass filter
 - Peak electric field proportional to peak current
- With stronger focusing > 1 MV/cm
- Pulse energy > 1mJ
- At shortest bunch operation half cycle < 10 fs THz pulse possible

Summary

Main issue is generation of THz pulse ahead of x-rays

- THz Pulse synchronized to x-ray beam
- Half cycle e-beam length (~25 fs) THz pulse with > 1MV/cm field possible