Advanced Materials for High Gradient Dielectric Based Accelerator
Euclid Techlabs and Accelerator R&D, HEP, ANL

A.Kanareykin

Euclid TechLabs LLC, Rockville, MD

This work is supported by the DOE, High Energy Physics
Euclid TechLabs LLC, founded in 1999 (as Euclid Concepts LLC) is a company specializing in the development of advanced dielectric materials for particle accelerator and other microwave applications. Additional areas of expertise include theoretical electromagnetics; dielectric structure based accelerator development; superconducting accelerating structure design; "smart" materials technology and applications; and reconfigurable computing.

Euclid and the Argonne Wakefield Accelerator group at ANL have a long history of successful collaboration in engineering development and experimental demonstration of high gradient acceleration using a number of different dielectric structures and electron beam configurations.

Collaborations with ANL, FNAL, Yale/Omega-P, UCLA.
Dielectric Based Accelerator:

High Gradient ($>100$ MV/m)
High Efficiency (high shunt impedance, low losses)

and

- Coupling (field enhancement) for externally powered (rf) structures
- High Transformer Ratio (energy transfer) for Wakefields
- Multipacting/Breakdown suppression
- Tuning
Outline

- Diamond Based DLA Structure
- Coaxial Coupling Section for the DLA Structure
- Transformer Ratio Experiment
- BST Ferroelectric Development/Tunable DLA
- Multilayer Dielectric Based Accelerator
- Active Media Development

This work is supported by the DOE SBIR program, High Energy Physics
Dielectric Materials for the HG Dielectric-Based Accelerator

Low loss microwave ceramic

<table>
<thead>
<tr>
<th>Materials</th>
<th>$\varepsilon$ (f = 9.4 GHz)</th>
<th>$\tan\delta$ (f = 9.4 GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cordierite</td>
<td>4.5±0.2</td>
<td>$\leq 2 \times 10^{-4}$</td>
</tr>
<tr>
<td>Forsterite</td>
<td>6.3±0.3</td>
<td>$\leq 2 \times 10^{-4}$</td>
</tr>
<tr>
<td>Alumina</td>
<td>9.8±0.3</td>
<td>$\leq 1 \times 10^{-4}$</td>
</tr>
<tr>
<td>D-10</td>
<td>9.7±0.2</td>
<td>$\leq 1.5 \times 10^{-4}$</td>
</tr>
<tr>
<td>D-13</td>
<td>13.0±0.5</td>
<td>$\leq 2 \times 10^{-4}$</td>
</tr>
<tr>
<td>D-14</td>
<td>14.0±0.5</td>
<td>$\leq 0.6 \times 10^{-4}$</td>
</tr>
<tr>
<td>D-16</td>
<td>16.0±0.5</td>
<td>$\leq 2 \times 10^{-4}$</td>
</tr>
<tr>
<td>D-18</td>
<td>18.0±3%</td>
<td>$\leq 1 \times 10^{-4}$</td>
</tr>
<tr>
<td>MCT-20</td>
<td>20.0±5%</td>
<td>$\leq 1.5 \times 10^{-4}$</td>
</tr>
<tr>
<td>V-20</td>
<td>20.0±5%</td>
<td>$\leq 3 \times 10^{-4}$</td>
</tr>
<tr>
<td>V-37</td>
<td>37.0±5%</td>
<td>$\leq 3 \times 10^{-4}$</td>
</tr>
</tbody>
</table>

---

Euclid Techlabs LLC
DIAMOND BASED ACCELERATOR

CVD DIAMOND-BASED ACCELERATOR


PROJECT IN COLLABORATION WITH ANL/AWA

Euclid Techlabs LLC

CVD DIAMOND PROPERTIES:

- RF BREAKDOWN THRESHOLD OF ~ 2 GV/m
- HIGHEST THERMAL CONDUCTIVITY (2.5×10³ W /m ×⁰K)
- MULTIPACTING CAN BE SUPPRESSED

- We measured the loss tangent and permittivity of the sample at 19.25 GHz. The dielectric constant 5.69±0.02 (5.7 nominal for diamond) and LOSS TANGENT is of (22±4)*10⁻⁵ at 19.25 GHz.

...and CVD DEPOSITION NOW CAN BE USED TO FORM CYLINDRICAL WAVEGUIDES
Photographs of the 5 mm ID alumina substrate in the PECVD reactor.*

*Developed for Euclid Techlabs by Coating Technology Solutions, Inc. Somerville, MA
CVD – DIAMOND 30-34 GHz

CVD-diamond Ka-band 5 mm ID cylindrical waveguide*

Scaling of the CVD Diamond Ka-band 5 mm ID structure.

*Developed for Euclid Techlabs by Coating Technology Solutions, Inc. Somerville, MA
Segmented Diamond Tube

Euclid Techlabs LLC

US HG Research Collaboration Workshop
SLAC, 2007
Diamond Tube Segments

*Developed for Euclid Techlabs by Coating Technology Solutions, Inc. Somerville, MA

Euclid Techlabs LLC
Scanning electron microscope images of a THz diamond microstructure produced using the hot wire deposition technique.
Multipacting is suppressed by treating the diamond surface during the CVD growth of the diamond, in particular, dehydrogenation of the surface to decrease the secondary electron yield. SEE coefficient is reduced from 60 to 1.


Collaboration:
- NRL, Surface Chemistry (J. Butler)
- Genvac Aerospace Inc./NASA
- Coating Technology Solutions, Inc.
NEW COAXIAL-TYPE COUPLER FOR THE DIELECTRIC-BASED ACCELERATOR*

PROJECT IN COLLABORATION WITH ANL/AWA

* Talk by C. Jing

Euclid Techlabs LLC

New Coupler Design for DLA Structures

Euclid Techlabs LLC

US HG Research Collaboration Workshop
SLAC, 2007
Coupling of the Diamond DLA

Euclid Techlabs LLC
TRANSFORMER RATIO ENHANCEMENT EXPERIMENT FOR THE DIELECTRIC-BASED ACCELERATOR*

PROJECT IN COLLABORATION WITH ANL/AWA

Euclid Techlabs LLC

US HG Research Collaboration Workshop
SLAC, 2007
Transformer Ratio

$R = \frac{\text{Max. energy gain behind the bunch}}{\text{Max. energy loss inside the bunch}}$
Wakefields measurements

Two-bunch wakefield experiment setup

The field probe signal from the RBT in the 13.625 GHz DLA

Euclid Techlabs LLC

US HG Research Collaboration Workshop
SLAC, 2007
Energy Gain in Collinear Wakefield Experiment

Numerical simulation of the experiment of transformer ratio enhancement experiment carried on the AWA facility.

Normalized energy gain/loss of the second drive bunch due to the wakefield behind the first drive bunch at varying spacing between them.
Enhanced Transformer Ratio in Collinear Wakefield Experiment

Future experiments:

We plan 4-bunch train experiment with 26 GHz structure, R ~ 6-7

Enhancement factor of 1.31
R ~ 2.3
In this demonstration experiment a dielectric structure was used as the wakefield accelerator; however, the use of an RBT to improve the transformer ratio is applicable to other accelerators, most importantly to beam-driven plasma wakefield accelerators that can now be operated at extremely high gradients [1] but still limited to $R < 2$. Recent publications in this area have emphasized the importance of the transformer ratio factor for the success of plasma high gradient accelerators [2-3].


A recent review for the Office of Science of the US Department of Energy by the National Task Force on High Energy Density Physics includes “Large Transformer Ratio” as part of its “Scientific Objectives and Milestones”.

http://www.ingentaconnect.com/content/klu/jofe/2005/00000024/F0020001/00006922
FERROELECTRICAL MATERIALS FOR:

- FREQUENCY TUNING FOR DIELECTRIC BASED ACCELERATORS
- SC CAVITY COUPLING ADJUSTMENTS FOR ILC
- PULSE COMPRESSION AND POWER DISTRIBUTION FOR LINEAR COLLIDER

PROJECT IN COLLABORATION WITH YALE/OMEGA-P, INC AND ANL/AWA

Euclid Techlabs LLC
A combination of ferroelectric and ceramic layers have been used to implement tuning of a composite waveguide.

permittivity of the ceramic and ferroelectric of 20 and 481 respectively, frequency shift of 162 MHz (second resonance) at 1.7 V/μm bias field.

Dielectric constant variation with DC electric field allows control of the matching between the longitudinal wakefield phase and the witness beam position for acceleration efficiency.
FAST ACTIVE L-BAND HIGH POWER TUNER FOR ILC

Schematic of the L-band tuner to produce fast ILC cavity coupling changes based on a magic-T and two phase shifters containing ferroelectric elements*.

* Developed by Omega-P, Inc., New Haven, CT

Ferroelectric ring elements for the X-band high power phase shifter. The same technology will be used for the L-band tuner fabrication.
The BST(M)-3 dielectric-ferroelectric composite has been studied experimentally with respect to the dielectric response on the applied transverse and parallel bias fields. The absolute tunability vs. transverse and parallel biasing voltages has been measured. The theoretical analysis of the transverse bias applied to ferroelectric materials has been carried out. Finally, feasibility of the use of transverse bias configurations for ferroelectric based accelerator component tuning has been demonstrated.
FERROELECTRIC PROPERTIES

- very short intrinsic response time of $\sim 10^{-10}$ - $10^{-11}$ sec (1 ns for circuits)
- high dielectric breakdown strength of 15-20 V/µm (150-200 kV/cm)
- high vacuum compatibility
- easy mechanical treatment (similar to conventional ceramic)

Ferroelectrics should have the following properties to operate in high-power rf switching and tuning devices:

- $\varepsilon$ - 300-500 [500-600 current, can be reduced to 150-250]
- dielectric constant $\varepsilon$ variation-10%-20% at 5 V/µ, [15% - $E_{\perp}$, >30% $E_{\parallel}$]
- DC field - 10’s of kV/cm loss factor [20 kV/cm air, tested]
- $\tan\delta$~$10^{-2}$-$10^{-3}$ at 11-35 GHz [5×$10^{-3}$ at X-band, 5×$10^{-4}$ 760 MHz, ring]
MULTILAYER DIELECTRIC BASED ACCELERATOR

PROJECT IN COLLABORATION WITH ANL/AWA

Euclid Techlabs LLC
**Multilayer DLA structure**

**MULTILAYER DLA:**
- ALLOWS TO CONFINE E/M FIELDS.
- REDUCES LOSSES DRAMATICALLY

<table>
<thead>
<tr>
<th>Layers</th>
<th>SINGLE</th>
<th>SINGLE</th>
<th>DOUBLE</th>
<th>4-LAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode $TM_{0n}$</td>
<td>$TM_{01}$</td>
<td>$TM_{03}$</td>
<td>$TM_{03}$</td>
<td>$TM_{03}$</td>
</tr>
<tr>
<td>Group Velocity</td>
<td>0.055</td>
<td>0.033</td>
<td>0.069</td>
<td>0.056</td>
</tr>
<tr>
<td>Q</td>
<td>2249</td>
<td>5102</td>
<td>6984</td>
<td>8501</td>
</tr>
<tr>
<td>r (MO/m)</td>
<td>15</td>
<td>8.72</td>
<td>15.00</td>
<td>22.00</td>
</tr>
<tr>
<td>r/Q</td>
<td>8756</td>
<td>1708</td>
<td>3143</td>
<td>2585</td>
</tr>
<tr>
<td>Power Attn (dB/m)</td>
<td>-14.4</td>
<td>-5.86</td>
<td>-2.14</td>
<td>-2.20</td>
</tr>
</tbody>
</table>

$Q \times f = \text{constant}$, $f$ is up, $\tan \delta$ is up as well.

Euclid Techlabs LLC
# Multilayer DLA structure

## DLA fabrication

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>11.424GHz</td>
</tr>
<tr>
<td>Inner Radius</td>
<td>3mm-5.17mm</td>
</tr>
<tr>
<td>Outer Radius</td>
<td>12.02mm</td>
</tr>
<tr>
<td>Dielectric Constant</td>
<td>37-9.7</td>
</tr>
<tr>
<td>Dielectric tube length</td>
<td>70mm/piece</td>
</tr>
<tr>
<td>Group Velocity</td>
<td>0.064c</td>
</tr>
<tr>
<td>R/Q</td>
<td>2040Ω/m</td>
</tr>
<tr>
<td>Shunt Impedance</td>
<td>12.5 MΩ/m</td>
</tr>
<tr>
<td>Power ATTN</td>
<td>2.7dB/m</td>
</tr>
</tbody>
</table>
Multilayer DLA structure
TM03 Launcher/Bench Test

Euclid Techlabs LLC

Power attenuation < 4 dB/m,
S11 < -15 dB

US HG Research Collaboration Workshop
SLAC, 2007
MASER CONCEPTS FOR ADVANCED ACCELERATOR:

- BASED ON FULLERENE TPhP-C$_{60}$ IN LC SOLUTION
- OPTICAL PUMPING
- ALL BENEFITS OF CONVENTIONAL ACCELERATOR

PROJECT IN COLLABORATION WITH ANL/AWA
Activity in Fullerenes

- Active medium: TPhP-C$_{60}$-LC solution
- Photoexcitation of triplet states of C$_{60}$ by optical pump
- Effect of the nematic liquid crystal component (rodlike molecules aligned to exhibit long range 1D order) is to introduce a symmetry breaking and allow the spin energy levels of the fullerene to become selectively populated.
- Operating temperature ~ 150 K
- Frequency of microwave transition is tunable by adjusting the applied magnetic field.
ESR Measurements of New Active Materials

Time dependence of the negative imaginary part of the magnetic susceptibility for different pump energies. $X'' = 10^{-4}$ corresponds to $\sim 10^{17}$ spins/cc.
The achievable spin density impacts the total volume of active media required for these measurements.

We use as a reference the maximum estimated number of $10^{17}$ spins/cm$^3$ for the E7-C$_{60}$ -TPhP solution.

This implies a stored energy in the medium of 6.6 erg/cm$^3$ excited by an optical pulse energy of 37 mJ/cm$^3$. ($G=660$ keV/cm for 1 pC bunch)

Measurements have been made at lower temperatures than originally planned. (150 K)
Bench Test System

- Rectangular cell
- PM dipole
  - Physically smaller than solenoid
  - Cool in LN$_2$ bath
  - Adaptable to beam experiment

90% transmission mesh window for pump input

Euclid Techlabs LLC
Bench Test/Acceleration Experiment

- Redesign of bench test system from the original proposal to accommodate the beam acceleration experiment with minor modifications.
- Use PM dipole to produce uniform 3 kG field across 1 cm X 5 cm test cell. (Under design using Poisson/Pandira)
- Tuning coil to provide required ~400 G field swing
- Pump signal from flashlamp input via fiber optics or lucite light guide
- 3D FDTD simulation code being developed using active medium model, auxiliary differential equation technique.
SUMMARY

NEW MATERIALS and technologies FOR ADVANCED CONCEPTS:

- CVD DIAMOND DEPOSITION HAS BEEN USED FOR THE 34 GHZ DLA STRUCTURE DEVELOPMENT. THE DIAMOND WAVEGUIDE HAS BEEN FABRICATED AND THE MATERIAL HAS BEEN RF TESTED.

- RF COUPLING SECTION FOR THE CERAMIC-BASED AND DIAMOND-BASED DLA HAS BEEN DESIGNED.


- TUNABLE LOW LOSS FERROELECTRIC FOR TUNABLE DLA, PULSE COMPRESSION AND POWER DISTRIBUTION FOR LINEAR COLLIDERS HAS BEEN DEVELOPED. ILC COUPLING TUNER IS UNDER DEVELOPMENT.

- FULLERENE BASED ACTIVE MEDIA FOR SOLID STATE MASER POWER SOURCE FOR ADVANCED ACCELERATOR HAS BEEN STUDIED. EXPERIMENTAL SETUP IS UNDER DEVELOPMENT.