STATUS OF LANL ACTIVITIES

Alberto Canabal and Tsuyoshi Tajima
Accelerator Operations and Technology (AOT) Division
Los Alamos National Laboratory

US High Gradient Research Collaboration Workshop
Stanford Linear Accelerator Center
May 23 – 25, 2007
Status of LANL Activities for Superconducting RF (SRF) Cavities

- In FY07, LANL has joined the effort to improve the performance of ILC Superconducting RF (SRF) cavities

Projects

- Analysis of failed SRF cavities will be our task
 - Development of a system to create a temperature mapping of the cavity surfaces during RF tests of a 9-cell TESLA/ILC type cavity is underway
- Study of MgB$_2$ as an alternative superconductor for SRF cavities
SRF cavities performance has been widely scattered

TESLA type cavity

Reproducibility Study
DESY: E_{acc} vs. time

H. Padamsee, ILC Workshop, Bangalore, March 2006
T-mapping has been very useful to detect and localize areas of problem on SRF cavity surfaces

- A full fixed-board system for a 9-cell cavity has not been tried yet
- For 9-cell cavities, only a rotating arm system has been developed

<table>
<thead>
<tr>
<th></th>
<th>Fixed-board system</th>
<th>Rotating arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Real time acquisition</td>
<td>Small number of sensors needed</td>
</tr>
<tr>
<td>Cons</td>
<td>Large number of sensors</td>
<td>Slow</td>
</tr>
</tbody>
</table>
T-mapping: how we will reduce the number of cables that go out of cryostat

- 17 sensors/cell x 9 cell/board x 36 board/cavity = 5,508 sensors/cavity
- Multiplexing inside cryostat = 612 sensors/4 boards get out
T-mapping: Illustration of one board. We will have 36 boards to cover every 10 degrees in azimuthal direction.
MgB$_2$, an alternate superconductor

Very weak dissipation at $H < H_{c1}$ ($Q = 10^{10}$-10^{11})

Q drop due to vortex dissipation at $H > H_{c1}$

Nb has the highest lower critical field H_{c1}

Thermodynamic critical field H_c (surface barrier for vortices disappears)

\[
H_{c1} = \frac{\phi_0}{4\pi\lambda^2} \left(\ln \frac{\lambda}{\xi} + 0.5 \right)
\]

\[
H_c = \frac{\phi_0}{2\sqrt{2}\pi\lambda\xi}
\]

A. Gurevich, Thin film Workshop, Padova, Italy, October 2006

Material	T_c (K)	$H_c(0)$ [T]	$H_{c1}(0)$ [T]	$H_{c2}(0)$ [T]	$\lambda(0)$ [nm]
Pb | 7.2 | 0.08 | na | na | 48
Nb | 9.2 | 0.2 | 0.17 | 0.4 | 40
Nb$_3$Sn | 18 | 0.54 | 0.05 | 30 | 85
NbN | 16.2 | 0.23 | 0.02 | 15 | 200
MgB$_2$ | 40 | 0.43 | 0.03 | 3.5 | 140
YBCO | 93 | 1.4 | 0.01 | 100 | 150
Thin film superconductor and its benefit

- For thin films:

Enhanced lower critical field and surface barrier in films

Use thin films with \(d < \lambda \) to enhance the lower critical field

\[
H_{c1} = \frac{2\phi_0}{\pi d^2} \left(\ln \frac{d}{\xi} - 0.07 \right)
\]

where \(\Phi_0, \xi \) are the fluxon and coherence length, respectively.

Field at which the surface barrier disappears

\[
H_s = \frac{\phi_0}{2 \pi d \xi}
\]
MgB$_2$: enhancement of H_{c1} with very thin film

Hc1 vs Thickness for MgB2 films

Hc1(T)

$H_{c1}(d \text{ nm})$

$H_{s}(d \text{ nm})$

Layer thickness (nm)
What gradient can we get theoretically?

Simple example

- Assumptions
 - $H_{c1}(Nb) = 0.17T$
 - $\lambda(MgB_2) = 140\text{nm}$
 - $\xi(MgB_2) = 5\text{nm}$

- What is the optimum $[d, H_{c1}(MgB_2)]$?
 - $H_{c1}(MgB_2) = 355\text{mT}$
 - $d = 105\text{nm}$

2x greater than Nb!
No vortex penetration
$E_{acc} \approx 100\text{MV/m}$
What we can observe during the tests of MgB$_2$

- $d < d_{opt}$
 - Quench due to Nb substrate

- $d > d_{opt}$
 - Quench due to MgB$_2$ layer

- Therefore, the key is to determine d_{opt}
 Given a MgB$_2$ coating method:
 - Accurate determination of λ and ξ
 - Calculation of d_{opt} using previous formulas
MgB$_2$ Coating methods

- What is the most suitable coating method for SRF cavities?

Ongoing research:

- RE – Reactive Evaporation
 Superconductor Technologies, Inc. (STI)

- PAD – Polymer-Assisted Deposition
 Superconductivity Technology Center at LANL

- HPCVD – Hybrid Physical-Chemical Vapor Deposition
 Pennsylvania State University
More details are found in
T. Tajima et al, Proc. PAC05.
RE at STI (B. Moeckly et al.)

R-plane sapphire

Si₃N₄ / Si

B.H. Moeckly, ONR Superconducting Electronics Program Review
Red Bank, NJ, February 8, 2005
PAD at LANL (Q. Jia et al.)

- A chemical solution technique to deposit films of nearly any metal-oxide using aqueous solution by mixing metal precursors with water-soluble polymers
- Polymer plays a critical role in metal-oxide films

Typical chemical solution deposition process flowchart
PAD at LANL (Q. Jia et al.)

- Process

1. Select metal precursor
2. Mix with polymer (adjust pH)
3. Polymer filtration and removal of all non-bound cations & anions
4. Mix different metal - polymer solutions
5. Adjust viscosity
6. Burning and/or de-polymerizing the polymer
7. Apply coating
8. Thermal treatment
Examples
HPCVD at PSU (X. Xi et al.)

- Get rid of oxygen to prevent oxidation.
- Pure source of B.
- Generate high Mg pressure: required by thermodynamics.
- High enough T for epitaxy.
- Make high Mg pressure possible.
- B supply (B_2H_6 flow rate) controls growth rate.
- Pure source of Mg.

Schematic View:
- H_2 (~100 Torr)
- B_2H_6 (~ 5 - 250 sccm)
- Substrate
- Susceptor
- 550–760 °C

By courtesy of Xiaoxing Xi from Penn State.
HPCVD at PSU (X. Xi et al.)

- Example of epitaxial MgB2 Films by HPCVD: $RRR > 80$

![Graph showing resistivity and temperature relationship](image)
References

- Alex Gurevich, “RF breakdown in multilayer coatings: a possibility to break the Nb monopoly” Thin films applied to Superconducting RF: Pushing the limits of RF Superconductivity. Padova, ITALY, October 9-12, 2006.
