## High Gradient Research at NRL

Steven H. Gold Naval Research Laboratory

US High Gradient Research Collaboration Meeting SLAC National Accelerator Laboratory 9-10 February 2011

## Activities

O Dielectric-Loaded Accelerating (DLA) Structures (with ANL, Euclid, SLAC)

- Multipactor and breakdown in DLA structures
- 16 experiments since 2002 (plus one at SLAC)
- Compact X-Band Test Accelerator-work in progress

O High Power RF Pulse Compressors

- Active Pulse Compressor with plasma switch tubes (with Omega-P, IAP) - 8 tests (2002-2008), then transitioned to SLAC for active SLED experiments
- Active Pulse Compressor with e-beam switching (with Omega-P, IAP) — first test January-March 2011
- Active Pulse Compressor with ferroelectric switching (with Omega-P, Yale, Euclid) - first test later this year


## Activities

O Dielectric-Loaded Accelerating (DLA) Structures (with ANL, Euclid, SLAC)

- Multipactor and breakdown in DLA structures
- 16 experiments since 2002 (plus one at SLAC)
- Compact X-Band Test Accelerator-work in progress

O High Power RF Pulse Compressors

- Active Pulse Compressor with plasma switch tubes (with Omega-P, IAP) - 8 tests (2002-2008), then transitioned to SLAC for active SLED experiments
- Active Pulse Compressor with e-beam switching (with Omega-P, IAP) — first test January-March 2011
- Active Pulse Compressor with ferroelectric switching (with Omega-P, Yale, Euclid) - first test later this year


## Activities

O Dielectric-Loaded Accelerating (DLA) Structures (with ANL, Euclid, SLAC)

- Multipactor and breakdown in DLA structures
- 16 experiments since 2002 (plus one at SLAC)
- Compact X-Band Test Accelerator-work in progress

O High Power RF Pulse Compressors

- Active Pulse Compressor with plasma switch tubes (with Omega-P, IAP) - 8 tests (2002-2008), then transitioned to SLAC for active SLED experiments
$\rightarrow$ - Active Pulse Compressor with e-beam switching (with Omega-P, IAP) - first test January-March 2011
- Active Pulse Compressor with ferroelectric switching (with Omega-P, Yale, Euclid) - first test later this year


## Dielectric-Loaded Accelerating Structures

DLA (Dielectric-Loaded Accelerator)

- Low-loss dielectric liner, instead of irises, used to reduce $v_{p h}$ to $c$.


## Principle Advantages

- Simple geometry
- No field enhancements on irises
- High gradient potential

Major Issues

- Multipactor
- Breakdown at dielectric joints

Geometry


Electric Field Vectors


## Summary of DLA Test Structures

| Material | $\mathrm{Al}_{2} \mathrm{O}_{3}[ \pm \mathrm{TiN}]$ | $\mathrm{Mg}_{\mathrm{x}} \mathrm{Ca}_{1-\mathrm{x}} \mathrm{TiO}_{3}$ | $\mathrm{SiO}_{2}[ \pm \mathrm{TiN}]$ | $\mathrm{SiO}_{2}$ | $\mathrm{SiO}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Dielectric constant | 9.4 | 20 | 3.78 | 3.78 | 3.8 |
| Loss tangent | $2 \times 10^{-4}$ | $3 \times 10^{-4}$ | $2 \times 10^{-5}$ | $2 \times 10^{-5}$ | $2 \times 10^{-5}$ |
| Inner radius | 5 mm | 3 mm | 8.971 mm | 1.5 mm | 3 mm |
| Outer radius | 7.185 mm | 4.567 mm | 12.079 mm | 6.45 mm | 7.37 mm |
| R/Q | $6.9 \mathrm{k} \Omega / \mathrm{m}$ | $8.8 \mathrm{k} \Omega / \mathrm{m}$ | $3.6 \mathrm{k} \Omega / \mathrm{m}$ | $15 \mathrm{k} \Omega / \mathrm{m}$ | $10.8 \mathrm{k} \Omega / \mathrm{m}$ |
| Group velocity | 0.134 c | 0.057 c | 0.38 c | 0.265 c | 0.27 c |
| RF power for <br> $1 \mathrm{MV} / \mathrm{m}$ gradient | 80 kW | 27 kW | 439 kW | 73.4 kW | 105 kW |
| Demonstrated <br> Gradient @ 200ns | $8 \mathrm{MV} / \mathrm{m}$ | $6 \mathrm{MV} / \mathrm{m}$ | $5 \mathrm{MV} / \mathrm{m}$ <br> $(9 \mathrm{MV} / \mathrm{m} @ 50 \mathrm{~ns})$ | $15 \mathrm{MV} / \mathrm{m}$ | $12 \mathrm{MV} / \mathrm{m}$ |

## Past DLA Results

Effect of TiN coating on Alumina DLA


Test of clamped quartz DLA structure


Effect of TiN coating on Quartz DLA


Effect of radius on quartz DLA


## Effect of Radius on Quartz DLA



## Effect of Radius on Quartz DLA



## Clamped Quartz Structure



## DLA Experiments @NRL in a year

1. The $1^{\text {st }}$ metalized quartz DLA structure, has been built and will be tested at NRL in a few months.

Thanks Sami to support with two SLAC type high power couplers.
2. The $1^{\text {st }}$ azimuthally and axially grooved quartz DLA structures, which are targeted to mitigate the multipactor, are under construction. They will be tested at NRL in a year.


## Structures Aiming for High Gradient

Travelling wave DLA Structure

| $\varepsilon_{r}$ <br> $(M C T)$ | $I D / O D$ | $r / Q$ | $V_{g}$ | Gradient per <br> 20MW input | Gradient per <br> $500 M W$ input |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15.7 | $5 \mathrm{~mm} / 8.67 \mathrm{~mm}$ | $10.9 \mathrm{k} \Omega / \mathrm{m}$ | 0.0665 c | $28.1 \mathrm{MV} / \mathrm{m}$ | $140.4 \mathrm{MV} / \mathrm{m}$ |

Dielectric tube has been developed.


## DLA Summary

- Goal is to understand multipactor and breakdown in DLA structures
- Rf breakdown generally occurs at discontinuities-couplers and dielectric joints—and can be eliminated by joint-free structures
- Multipactor appears to be universal, even at modest accelerating gradients, but has a finite risetime, and isn't seen in short-pulse experiments (e.g., AWA). Low SEE coatings reduce, but don't eliminate it. The high power scaling still isn't understood.
- New experiments in preparation:
- Metallized structures to eliminate dielectric gaps
- Grooved structures to suppress multipactor
- High gradient TW and SW structures


# Two-channel active RF pulse compressor using electron beam switching 

A.L. Vikharev, ${ }^{1,2}$ O.A. Ivanov, ${ }^{1,2}$ A.M. Gorbachev, ${ }^{1,2}$<br>V.A. Isaev, ${ }^{1}$ M.A. Lobaev, ${ }^{1,2}$ J.L. Hirshfield, ${ }^{2,3}$ S. H. Gold, ${ }^{4}$ and A.K. Kinkead ${ }^{5}$<br>${ }^{1}$ Institute of Applied Physics RAS, Nizhny Novgorod, Russia<br>${ }^{2}$ Omega-P, Inc., New Haven, CT, USA<br>${ }^{3}$ Department of Physics, Yale University, New Haven, CT, USA<br>${ }^{4}$ Plasma Physics Division, Naval Research Laboratory, Washington, DC, USA<br>${ }^{5}$ Icarus Research, Bethesda, MD, USA

## Background

- Active microwave pulse compressors offer improved compression ratios and efficiencies compared to passive compressors such as SLED 2
- A series of experiments were carried out on pulse compressors switched by triggered breakdown of low-pressure gas-filled quartz tubes, using both transmission and reflection configurations
- The highest output power was $\sim 70$ MW in $\sim 40$-ns pulses at $\sim 8 x$ compression from a two-channel, dual-mode compressor in the reflection configuration
- Performance was limited by multipactor and self-breakdown of the quartz switch tubes, as well as by transient switching effects caused by the inability to control the electron density during the switching process.


## Two-Channel Dual-Mode Pulse Compressor Based on TE $01 \rightarrow$ TE 02 Mode Conversion*


*A.L. Vikharev et al., Phys. Rev. ST Accel. Beams 12, 062003 (2009).

## Principle of Switch Operation



- Switch cavity is initially tuned below resonance, determining the resonant value of $n_{e}$
- HVPG ionizes the switch tube, creating an initial $n_{e}$ that tunes the switch towards resonance
- Cavity RF fields increase, further increasing $n_{e}$
- Effective switching requires raising $n_{e}$ to the resonant value, and keeping it there throughout the switching process
- There are two main adjustments
- Adjustable short: affects "resonant" value of $n_{e}$ as well as initial rf fields in the cavity
- Gas fill pressure: affects self-breakdown threshold (lower pressure is better); and $n_{e}$ produced by HVPG and by RF fields as the switch tunes into resonance


## Incident and Compressed Pulses





Triggered Switching
Switch setting: <1
Pressure: 0.02-0.05 Torr
Input power: ~3 MW
Output power: ~25 MW
Output pulse length: $\sim 35 \mathrm{~ns}$
Power gain: $\sim 8 \mathrm{x}$
Efficiency: ~45\%

## Pulse Compressor Summary

(from March, 2009)

- Two-channel $\mathrm{TE}_{02}$-mode energy storage cavities with plasma switches are a promising candidate for high-power active RF pulse compression
- The final experiment demonstrated 65-70 MW, 40-70 ns compressed pulses using untriggered switching. The power gain was $7.4-8.2$ with energy efficiency of 55-63\%.
- The highest power in triggered switching was 25 MW in a 34 -ns pulse, limited by self-breakdown and the difficulty of controlling electron density during the switching process. Possible solutions include
- Redesigning switch cavity to reduce rf electric fields at the quartz switch tube
- Changing the switching mode to detune the switch out of resonance, instead of tuning into resonance. This might be done with an e-beam instead of a gas discharge tube.


## Pulse Compressor Summary

## (from March, 2009)

- Two-channel $\mathrm{TE}_{02}$-mode energy storage cavities with plasma switches are a promising candidate for high-power active RF pulse compression
- The final experiment demonstrated 65-70 MW, 40-70 ns compressed pulses using untriggered switching. The power gain was $7.4-8.2$ with energy efficiency of $55-63 \%$.
- The highest power in triggered switching was 25 MW in a 34 -ns pulse, limited by self-breakdown and the difficulty of controlling electron density during the switching process. Possible solutions include
- Redesigning switch cavity to reduce rf electric fields at the quartz switch tube
- Changing the switching mode to detune the switch out of resonance, instead of tuning into resonance. This might be done with an e-beam instead of a gas discharge tube.


## Diagram of Single-Channel Pulse Compressor using e-Beam Switching*



1 - microwave generator, 2 - directional coupler, 3 - circulator, $4-\mathrm{TE}_{10} \rightarrow \mathrm{TE}_{01}$ mode converter, 5 - cylindrical waveguide, 6 - input-output taper, 7 - storage resonator, 8 - taper, 9 - attenuator, 10 - microwave detector, 11 - oscilloscope, 12 - scalar network analyzer, 13 - HV pulser, 14 - Rogowski coil; 15 - microwave window, 16 - movable diaphragm, 17 - switch resonator, 18 - anode, 19 cathode, 20 - isolator, 21 - pumping, 22 - vacuum meter.
*O.A. Ivanov et al., in Proc. 14 ${ }^{\text {th }}$ Adv. Accel. Concepts Workshop, 2010, p. 292.

## Principle of Operation of e-Beam Switch

The reflection coefficient at frequency $\omega$ from a cavity tuned to $\omega_{0}$ is

$$
R=1-\frac{2 \beta}{(1+\beta)\left(1+2 \cdot i \cdot Q_{L} \frac{\omega-\omega_{0}}{\omega_{0}}\right)}
$$

where $\beta=Q_{0} / Q_{e}, Q_{0}$ is the intrinsic $Q$-factor of the cavity, $Q_{e}$ is the coupling $Q$ factor, and $Q_{L}=Q_{0} Q_{\mathrm{e}} /\left(Q_{0}+Q_{\mathrm{e}}\right)$ is the loaded $Q$-factor.

For $\beta \gg 1$, and $\omega=\omega_{0}, R \approx-1$.
For $\beta \gg 1$, and $\left|\omega-\omega_{0}\right| \gg \omega_{0} \mid 2 Q_{L}, R \approx 1$.
Therefore, if an overcoupled cavity is rapidly driven out of resonance, the phase of the reflected wave will change by $\Delta \varphi \approx \pi$ while $|R|$ remains $\approx 1$.

This will change the $\mathrm{TE}_{02} \leftrightarrow \mathrm{TE}_{01}$ coupling coefficient from $\sim 3 \%$ to $\sim 40 \%$.
The transition time is $\tau_{\rho} \sim Q_{L} / \omega_{0}$. For $Q_{L} \sim 200$ and $f_{0}=11.4 \mathrm{GHz}, \tau_{\rho} \approx 3-5 \mathrm{~ns}$.

## Principle of Operation of e-Beam Switch (continued)

Shifting the resonant frequency of the switch cavity by $f_{0} / Q_{L}$ with an electron beam requires:

$$
\begin{aligned}
& N_{e} \geq 2 n_{c} V_{R} A / Q_{L} \approx 10^{11} \text { electrons, where } \\
& Q_{L} \approx 200 \\
& n_{c}=1.6 \times 10^{12} \mathrm{~cm}^{-3} \\
& A \approx 0.5 \text { for } \mathrm{TE}_{01} \text { mode } \\
& V_{R} \approx 50 \mathrm{~cm}^{3} \\
& \Rightarrow \quad I \geq 250 \mathrm{~A}
\end{aligned}
$$

## e-Beam Switch





## Incident and Compressed Pulses



## Two-Channel Dual-Mode Pulse Compressor with e-Beam Switching


(1) single-channel of the compressor; (2) magnicon; (3) power combiner; (4) output window; (5) single-mode 3-dB hybrid coupler; (6) phase shifter; (7) matched load; (8) 55.5-dB directional coupler; (9) high-voltage pulse generator; (10) ion pump; (12) section of cylindrical waveguide, (13) conical taper, (14) switch, (15), (16), (17) screened enclosure.


## Early Traces



## Summary

- Low-power testing of a single-channel dual-mode e-beam switched pulse compressor with a $\mathrm{TE}_{02}$-mode energy storage cavity demonstrated 40 ns output pulses at $\sim 20 x$ compression ratio.
- A new high-power two-channel dual-mode pulse compressor with e-beam switching has been set up in the magnicon lab at NRL. The initial experiments are under way and will run through mid-March.
- The estimated power multiplication of the two-channel compressor is 15-20. At 10 MW drive power, output pulses of 150-200 MW are possible.

