ACE3P Application in High Gradient Structure Research

Zenghai Li
Advanced Computations Group
SLAC National Accelerator Laboratory

US High Gradient Research Collaboration Workshop
Feb. 10, 2011

Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515.
Outline

- Parallel Finite Element Code Suite ACE3P
- ACE3P Application to High Gradient R&D
 1. PBG Structure
 2. X-Band Gun
 3. X-Band klystron
 4. CLIC Cell MP
 5. CLIC PETS & structure
- Summary
Parallel Finite Element Code Suite **ACE3P**
Parallel Higher-order Finite-Element Method

Strength of Approach – Accuracy and Scalability

- **Conformal** (tetrahedral) mesh with quadratic surface
- **Higher-order** elements ($p = 1-6$)
- **Parallel** processing (memory & speedup)

\[E(x, t) = \sum_i e_i(t) \cdot N_i(x) \]

End cell with input coupler only

67k quad elements (<1 min on 16 CPU, 6 GB)

Error ~ 20 kHz (1.3 GHz)
Accelerator Modeling with EM Code Suite **ACE3P**

Meshing - CUBIT for building CAD models and generating finite-element meshes
http://cubit.sandia.gov

Modeling and Simulation – SLAC’s suite of conformal, higher-order, C++/MPI based parallel finite-element electromagnetic codes

ACE3P (Advanced Computational Electromagnetics 3P)

Frequency Domain:
- Omega3P – Eigensolver (damping)
- S3P – S-Parameter

Time Domain:
- T3P – Wakefields and Transients

Particle Tracking:
- Track3P – Multipacting and Dark Current

EM Particle-in-cell:
- Pic3P – RF guns & klystrons

Multi-physics:
- TEM3P – EM, Thermal & Structural effects

Postprocessing - ParaView to visualize unstructured meshes & particle/field data
http://www.paraview.org/

Z. Li US High Gradient Workshop, SLAC, Feb 2011
Accelerator Design and Analysis with **ACE3P**

- **Model** CAD
- **Meshing** Cubit
- **Partitioning** ParMetis
- **Solvers**
- **Visualization** ParaView

Constraint

\[f = f_0 ; \]

Maximize \((R/Q, Q)\)

Minimize \((\text{wakefields})\)

Minimize \((\text{surface fields etc.})\)

ACE3P EM Field Computations

Determine Cavity Dimensions

Fabrication

Cell QC

Single-disk RF-QC

Wakefield Measurement

Quasi coupled Dipole Wakefield \((Q=2000)\)

0.01% in freq
ACE3P Capabilities

- **Omega3P** can be used to
 - optimize RF parameters
 - reduce peak surface fields.
 - determine HOM damping, trapped modes & their heating effects
 - design dielectric & ferrite dampers, and others

- **S3P** calculates the transmission (S parameters) in open structures

- **T3P** uses a driving bunch to
 - evaluate the broadband impedance, trapped modes and signal sensitivity
 - compute the wakefields of short bunches with a moving window
 - simulate the beam transit in large 3D complex structures

- **Track3P** studies
 - multipacting in cavities & couplers by identifying MP barriers & MP sites
 - dark current in high gradient structures including transient effects

- **Pic3P** calculates the beam emittance in RF gun designs

- **TEM3P** computes integrated EM, thermal and structural effects for normal cavities & for SRF cavities with nonlinear temperature dependence
ACE3P Application to High Gradient R&D

(1) PBG Structure
(2) X-Band Gun
(3) X-band klystron
(3) CLIC Cell – Multipacting
(4) CLIC PETS & Structure
T3P – Photonic Bandgap Structure

MIT PBG structure
- Operated at 17 GHz for high gradient acceleration
- Study effects of transients of drive pulse on dark current
- Evaluate power radiation from multi-beam transit

Power coupling
Multi-beam transit
Pic3P - SLAC/LLNL X-Band Gun

3D Emittance Calculations for Bunch with Offset

- f = 11.424 GHz, 200 MV/m peak Ez on cathode
- Solenoid Bz_max = 0.5658 T at Z = 6.3 cm
- Beer can (r = 0.5 mm, 2 ps flat top, 0.4 ps rise time), 250 pC
- Bunch injected 30 degrees after zero-crossing

4D Emittance vs <Z>
Pic3P/Gun3P – X-Band Klystron Design

(Collaboration with Aaron Jensen – Klystron Dept)

Goal is to perform 3D end-to-end simulation using High Performance Computing

XL4 Output cavity
- Comparing efficiency with MAGIC

XC8 Output Cavity
- Comparing start oscillation with measurement
CLIC TD18(24) Multipacting Analysis
Brazing Gap - Multipacting Analysis

Cutoff Picture Reveals a Possible Bonding Problem

Juwen Wang, IWLC2010, & this workshop
Metallographic Pictures for Bonding Area in a C10 Structure

- Very good bonding
- Corner radius is much smaller than drawing specified 0.005" (127 microns). The red bar is 254 microns.

Juwen Wang, IWLC2010, & this workshop
CERN Pictures for TD18 Structure after High Power Test

Part C
Down-stream side - Cell Wall S-W!
Tilt 30°

Juwen Wang, IWLC2010, & this workshop
Model With “Gap”

- Gap – local chamfer
- Primary electrons emitted around the gap region
CLIC TD24 Cell

* E&B fields
Multipacting Simulation Around the Gap

* Primary electrons emitted around the gap region
* Identify resonant trajectories
* Use impact energy to estimate potential SEY

(Copper SEY, variations from different docs)

Figure 2: The S.E.Y. of copper for various surface treatments
Gap: opening=0.05mm, d=0.2mm
Gap: opening=0.1mm, d=0.3mm
Gap due to rounded corner

* Rounding radius: 0.125mm
No Brazing Gap

Primaries emitted in the area around the HOM coupler opening corner
No Brazing Gap - Larger Area Scan

* Will scan more surface areas for primary emission
* MP analysis continues
CLIC PETS and Accelerator Structure

- Wakefield Simulation
T3P - CLIC Two-Beam Accelerator

Compact Linear Collider
two-beam accelerator unit

PETS + TD24
Converged SLAC results have served as a reference for CERN

Led to CERN’s improved understanding of GdfidL results and its usage

Now the codes agree well – Important cross-check for CLIC design

Typical runtime:
- 20 hours, 80 CPUs
- 0.6 hours, 1200 CPUs
- 6 hours, 4800 CPUs
T3P – Dipole Wakefield Coupling

For this geometry, the coupled wakes are only about one order of magnitude below the TD24 self-generated wakefields (assuming 100x higher current in PETS).

Wakefield excited by an off-axis PETS drive bunch ($\sigma_z=2$ mm), using dipole boundary conditions.

- **Wakefield coupling: potentially critical for CLIC**
- **More studies planned with more realistic coupling geometry**

Dipole wake in TD24 generated by PETS drive bunch

Computed dipole wake coupled into TD24
Summary

- Parallel finite-element (FE) electromagnetics (EM) method demonstrates its strengths in high-fidelity, high-accuracy modeling for accelerator design, optimization and analysis.

- ACE3P code suite has been benchmarked and used in a wide range of applications in Accelerator Science and Development, including High Gradient Research.

- Track3P for multipacting and dark current simulations provides an effective tool for observing quantities inside structure, helping to understand the HG processing process.

- Progress is being made in simulating MP in CLIC TD18 structure using Track3P.

- Will simulate other high gradient structures by using Track3P to understand MP and dark current issues.
ACE3P User Community - CW10 Code Workshop

CW10 @ SLAC

Accelerator Code Workshop (CW10) at SLAC for the ACE3P (Advanced Computational Electromagnetics 3P) Code Suite organized by the Advanced Computations Group (ACG)

Date — September 20-22, 2010
Time — See agenda
Place — SLAC National Accelerator Laboratory
 Menlo Park, California

Contact — ACD-CW10@slac.stanford.edu
 650-926-2864
 650-926-4603 (FAX)

(www-conf.slac.stanford.edu/CW10/default.asp)
CW10 Attendees & Agenda

CW10 @ SLAC

CW10 ACCELERATOR CODE WORKSHOP

SLAC NATIONAL ACCELERATOR LABORATORY

Attendees

<table>
<thead>
<tr>
<th>Institution</th>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam booster</td>
<td>Jing Zhou</td>
<td>jzhou@bcs.bnl.gov</td>
</tr>
<tr>
<td>CERN</td>
<td>Giordano Konrad</td>
<td>giordano.konrad@cern.ch</td>
</tr>
<tr>
<td>Cornell</td>
<td>Sergey Bulanovski</td>
<td>sbulanovski@cornell.edu</td>
</tr>
<tr>
<td></td>
<td>Vitaly Veksler</td>
<td>veksler@cornell.edu</td>
</tr>
<tr>
<td></td>
<td>Jan Progo</td>
<td>jan.progo@cornell.edu</td>
</tr>
<tr>
<td></td>
<td>Valery Semtsov</td>
<td>vsesmtsov@cornell.edu</td>
</tr>
<tr>
<td>FABTECH</td>
<td>Nick Haber</td>
<td>nhaber@fattech.com</td>
</tr>
<tr>
<td>BNL</td>
<td>Ryan Zhai</td>
<td>ryanlwzbz@bnl.gov</td>
</tr>
<tr>
<td>FNAL</td>
<td>Gary Cheng</td>
<td>gary.cheng@fnal.gov</td>
</tr>
<tr>
<td>LLNL</td>
<td>Cong Huang</td>
<td>cong.huang@llnl.gov</td>
</tr>
<tr>
<td>LLNL</td>
<td>Scott Anderson</td>
<td>scott.anderson@gmail.com</td>
</tr>
<tr>
<td></td>
<td>Brent Marsh</td>
<td>bmarsh1@lbl.gov</td>
</tr>
<tr>
<td>NCSA</td>
<td>John Popelio</td>
<td>john.popelio@ncsa.uiuc.edu</td>
</tr>
<tr>
<td></td>
<td>Jeremias Holzmann</td>
<td>holzmann@ncsa.uiuc.edu</td>
</tr>
<tr>
<td>OSGE</td>
<td>Andrew De Silva</td>
<td>andrew.desilva@osge.gov</td>
</tr>
<tr>
<td>FNAL</td>
<td>Mike Doherty</td>
<td>mikedoherty@fnal.gov</td>
</tr>
<tr>
<td></td>
<td>Alexandre Dario</td>
<td>andrealex@dario.org</td>
</tr>
<tr>
<td>GSEC Berkeley</td>
<td>Peter MacIsaac</td>
<td>peter.macisaac@berkeley.org</td>
</tr>
<tr>
<td></td>
<td>Philippe Goudret</td>
<td>philippe.goudret@epfl.ch</td>
</tr>
<tr>
<td>SILO</td>
<td>Joel England</td>
<td>joel.england@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Valery Dviguzer</td>
<td>dviguzer@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Chris Budzien</td>
<td>chris.budzien@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Aaron Jensen</td>
<td>aaron.jensen@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Kat Tan</td>
<td>kat.tan@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Stephen Germe</td>
<td>stephen.germe@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Jeffrey Boshom</td>
<td>jeffrey.boshom@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Jenny Ng</td>
<td>jenny.ng@stanford.edu</td>
</tr>
<tr>
<td></td>
<td>Erland Wu</td>
<td>erland.wu@stanford.edu</td>
</tr>
<tr>
<td>Dept. of London</td>
<td>Steve McCullough</td>
<td>steve.mccullough@ncl.ac.uk</td>
</tr>
<tr>
<td></td>
<td>John Niewo</td>
<td>john.niewo@ucl.ac.uk</td>
</tr>
<tr>
<td>Dept. of Manchester</td>
<td>Roger Jones</td>
<td>roger.jones@manchester.ac.uk</td>
</tr>
<tr>
<td>Dept. of Oslo</td>
<td>Kyrre Ness Sjølberg</td>
<td>kyrsjo@fys.uio.no</td>
</tr>
</tbody>
</table>

CW11 is being planned

All sessions are 1 hr 45 min

<table>
<thead>
<tr>
<th>8:30-10:15</th>
<th>10:15-10:30</th>
<th>10:30-12:15</th>
<th>12:15-1:30</th>
<th>1:30-3:15</th>
<th>2:15-2:30</th>
<th>3:30-5:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro</td>
<td>CUBIT</td>
<td>Track3P</td>
<td>lunch</td>
<td>Omega3P</td>
<td>Track3P</td>
<td>lunch</td>
</tr>
<tr>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>Omega3P</td>
<td>Track3P</td>
<td>T3P</td>
</tr>
<tr>
<td>Scratch</td>
<td>Scratch</td>
<td>Scratch</td>
<td>Scratch</td>
<td>Scratch</td>
<td>Scratch</td>
<td>Scratch</td>
</tr>
</tbody>
</table>

Z. Li US High Gradient Workshop, SLAC, Feb 2011