Design of Dielectric and Metallic PBG Structures

M. Shapiro, A. Cook, B. Munroe, E. Nanni, and R. Temkin *MIT Plasma Science and Fusion Center, Cambridge, MA*

US High Gradient Research Collaboration Workshop 2011,

SLAC National Accelerator Laboratory, Feb. 9, 2011

OUTLINE

- Introduction
- Dielectric PBG Structure Experiment
- New results in Metallic PBG Structure Theory
- Conclusions

Previous Research: Dielectric-rod PBG

- Sapphire-rod cavities cold tested by Masullo et al. (Naples)
- Numerically-optimized cavities designed w/ improved wakefield damping by Bauer et al. (UC Boulder, Tech-X Corp.)
- Dispersion engineering numerical studies by Seviour (Lancaster U.)

Masullo et al, Microwave Opt. Tech. Lett. 2006

17 GHz TM₀₂ PBG Accelerator Cavity

TM₀₂-like mode

sapphire rods, ε = 9.3, 1.6 mm radius

- TM₀₂-like mode at 17 GHz
- TM₀₁ mode not confined

Diffractive Q

7 rows, Q_{*diff*} ≈ 19,000

- Simulated radiation loss
- Need more rows of rods than metal structure
- Advanced designs could have fewer rows

Dielectric-rod PBG Lattice

- Has a minimum gap frequency, unlike metal lattice
- Allows overmoded design (e.g. TM₀₂)

Calculated with code MPB, S. Johnson et al.

Higher-order modes

- Operating point has no lower-order modes
- A few higher-order modes allowed
 - these must be damped

Massachusetts Institute of Technology

Plii

Damping higher-order modes

• Six radial rows of rods removed to damp HOMs

TM₀₂ mode diffractive Q ~ 18,000

damped TM₁₃ mode diffractive Q ~ 100

Comparing Cavities

• Compare pillbox cavity and two PBG cavities:

 Figures of merit – peak surface H field, peak surface E field for a given accelerating gradient:

$$G = \frac{1}{L} \int_{-L/2}^{L/2} E_z(z) \cos(\omega z/c) dz$$

HFSS Model – Single Cell

E Field Radial Profiles

- All cavities have 100 MeV/m gradient
- Radial E fields identical near axis and at iris •
- E = 60 MV/m at inner rod

H Field Radial Profiles

pillbox

Massachusetts Institute of Technology

Experiment Plans

High-power test of 17 GHz overmoded sapphire-rod structure
may use metal rods in outer row to allow fewer rods

- 3.5 MW input power, for ~ 100 MeV/m accel. gradient
- Will investigate effect of high surface H field, and E field in rods

Conclusions on Dielectric PBG

- Designed overmoded accelerator cavity from dielectric-rod PBG
 - does not confine lower-order mode
 - HOMs can be suppressed
- Overmoded cavity can mitigate high pulsed heating seen in metal-rod PBG high-gradient testing
 - has same peak surface H field as pillbox cavity
- Testing of 17 GHz overmoded accelerator cavity to begin at MIT
 - compare with metal-rod PBG; learn about H field role in breakdown at dielectric-metal interface

OUTLINE

- Introduction
- Dielectric PBG Structure Experiment
- New results in Metallic PBG Structure Theory
- Conclusions

Metallic PBG Structure Simulation

- We are conducting more detailed simulations of metallic PBG structures
 - Continuing research on wakefields and high order modes in metallic PBG structures
 - Dirac point may increase confinement of HOMs

Brillouin Diagram: Dirac Point

Experimental Study of Dirac Point

S. Bittner et al., PRB 82, 014301, 2010

No transmission in bandgaps. Transmission reduced by 20 dB at Dirac point.

Simulation of Dirac Point Map

• Example of a Low Q Mode confined at a Dirac point (a/b=0.25)

Dirac point calculation results

- Dirac point map was added to bandgap map
- Low Q mode found at Dirac point frequency
 - More research planned

Conclusions

- 17 GHz Dielectric PBG structure designed for testing at MIT
 - Sapphire rods and metal disks will be used
 - No magnetic field enhancement
- Comparison with metallic structures useful for understanding breakdown and high gradient limits
- New interesting properties of metallic PBG structures
 - Dirac point map calculated for metallic structures
 - Partially confined defect mode

Acknowledgements

This research is funded by the

US Department of Energy,

Office of High Energy Physics