High Gradient Tests of Photonic Accelerator Structures at 11.4 and 17 GHz

Presented by

Brian Munroe and Richard Temkin

MIT Plasma Science & Fusion Center

US High Gradient Research Collaboration Workshop 2011 SLAC February 9, 2011

Collaborators / Acknowledgements

MIT	SLAC	HRC
A. Cook	V. Dolgashev	J. Haimson
I. Mastovsky	J. Lewandowski	LANL
E. Nanni	L. Laurent	E. Smirnova
M. Shapiro	S. Tantawi	LLNL
P. Thomas	D. Yeremian	R. Marsh

This research is funded by the

US Department of Energy,

Office of High Energy Physics

Outline

- Introduction
- Research at 17 GHz at HRC/MIT Accelerator Laboratory
 - Planned User Facility
- Single-cell X-Band Breakdown Studies at SLAC
 - Round-Rod PBG Testing
 - Elliptical-Rod PBG Testing
- Summary and Conclusions

Frequency Selective PBG Lattice

 Wave propagation is disallowed at certain frequency ranges (Photonic Band Gap - PBG) in a periodic lattice.
 band gaps

Microwave PBG Accelerators

- Experimental results validate concept
- Demonstrated acceleration at 17 GHz at MIT (Smirnova 2005)
 - 35 MV/m achieved
- High-power testing at SLAC at 11 GHz (Marsh 2009)
 - 100 MV/m achieved
 - Showed influence of high H fields on breakdown

Motivation for PBG Accelerator – 1. Wakefields

- Accelerator cavities suffer from parasitic modes (wakefields)
 - pillbox cavities can't be used in a linear collider!
- An ideal cavity would support only the operating mode
 - A frequency-selective PBG cavity can accomplish this
- Theoretical and experimental studies of high order modes / wakefields substantiate the reduced HOMs in PBG structures

•PBG Expt. Wakefield Studies: Jing et al. PRSTAB 2009 (X-Band) Marsh et al. PAC09 (17 GHz) Marsh et al. NIM A 2010 (17 GHz)

Motivation for PBG – 2. Pulsed Heating Research

- PBG Cavities with Strong Wall Heating: Circular Rod PBG Cavities with small a/b
 - Small a/b PBG cavities have high H-Fields and heating
 (ΔT) at the inner metal rod surface
 - Marsh, PAC2009 and Marsh et al. PRSTAB 2011.
 - The gradient and E-field depend very weakly on a/b;
 values are similar to pillbox cavities
 - A systematic study of PBG cavities of varying a/b will allow the separate study of E- and H-Field effects at high gradient – planned at MIT
- PBG Cavities with reduced Wall Heating: Elliptical rod structures
 - Elliptical rod structure now under study at SLAC

PBG a/b=0.15 PBG a/b=0.3

MIT/HRC Accelerator and Test Stand

MIT HRC			
Accelerator Parameters			
Modulator Voltage	700 kV		
Modulator Pulsed Power	500 MW		
Modulator Pulse	1.0 μs Flat-		
Length	top		
Klystron Power	25 MW		
RF Frequency	17.14 GHz		
Linac Energy	25 MeV		
Linac Length	0.5m, 94 cells		
Test Stand Power	4 MW		

17 GHz Test Stand / User Facility

- Powered by HRC 17 GHz Klystron
 - 4.2 dB hybrid coupler; up to 4 MW of power available
- Test stand will be completed in Spring, 2011
 - 17 GHz TM₀₁ mode launchers built by SLAC
- Planned experiments on MIT PBG structures
 - Microwave breakdown with improved diagnostics
 - Metallic PBG Structures
 - Dielectric PBG Structures
- Users Welcome!
 - That means you

HRC Hybrid

SLAC 17 GHz Launcher

Collaboration with Haimson Research

- Test of Choppertron
- Testing of Brazed Molybdenum/Copper Disk Irises in 17 GHz Linac Structures

View of All-Copper 17 GHz Linac Structure and 4X Peak Power Amplifier System.

Outline

- Introduction
- Research at 17 GHz at HRC/MIT Accelerator Laboratory
 - Planned User Facility
- Single-cell X-Band Breakdown Studies at SLAC
 - Round-Rod PBG Testing
 - Elliptical-Rod PBG Testing
- Summary and Conclusions

X-Band Single Cell Testing at SLAC

- Standing wave design with half field in each of 2 coupling cells and full field in test cell
- Reusable TM₀₁ mode launchers are used to power structures via axial coupling

WR-90 In

Outline

- Introduction
- Research at 17 GHz at HRC/MIT Accelerator Laboratory
 - Planned User Facility
- Single-cell X-Band Breakdown Studies at SLAC
 - Round-Rod PBG Testing
 - Elliptical-Rod PBG Testing
- Summary and Conclusions

11 GHz Structure Design

- Round-rod PBG (RR PBG) designation: 1C-SW-A5.65-T4.6-Cu-PBG-SLAC#1
- 3 rows of round rods, all rows identical

Round-Rod PBG Pulsed Heating Results

• Very high ΔT on early shots,

Massachusetts Institute of Technology

Round-Rod PBG Autopsy

Outer Rod

Inner Rod

Input Iris

Output Iris

Outline

- Introduction
- Research at 17 GHz at HRC/MIT Accelerator Laboratory
 - Planned User Facility
- Single-cell X-Band Breakdown Studies at SLAC
 - Round-Rod PBG Testing
 - Elliptical-Rod PBG Testing
- Summary and Conclusions

Improved Design at 11 GHz

- First structure saw significant heating for modest gradient
- New design should reduce heating for the same gradient
- Elliptical inner rods reduce pulsed heating by almost a factor of 2
 - 2 rows, inner elliptical, outer round

	Round Rod Structure	Elliptic Rod Structure
E _{peak} for 10 MW P _{in}	280 MV/m	310 MV/m
H _{peak} for 10 MW P _{in}	1300 kA/m	1070 kA/m

Elliptical-Rod PBG Field Profiles

 Electric field Magnetic Field

Cold Test of Elliptical-Rod PBG

- Cold test procedure:
 - Q is calculated from S_{11} measurements
 - Non-resonant bead pull is used to determine field profile

Sample Power and ΔT vs Time During Testing

Testing Protocol

- Pulsed heating is a major concern!
- Test in phases by limiting pulsed heating:
 - From 50K to 90K in 10K increments
- Pulsed heating limit sets power limit for each pulse

Testing Protocol (2)

- Record breakdown rate at standard conditions at the end of each phase: 200ns, >10hrs at each power level, e.g.
 - 50K: 1.9MW
 - 70K: 1.9MW, 2.3MW, 2.7MW
- Allows us to compare performance during each phase

- Even small numbers of breakdowns give us limits on breakdown rate
- Should indicate a pulsed heating temperature rise beyond which structure performance degrades

Current Pulsed Heating Data

• Heating limit of $\Delta T < 50K$ maintained during phase 1

Massachusetts Institute of Technology

Conclusions

- Photonic Structures have unique properties
 - Reduced high order modes and wakefields
 - Useful for studies of pulsed heating
- Photonic Bandgap Structures have now been studied at high gradient and high rep rate at SLAC
 - Damage seen in first studies using circular rods
 - Second tests underway on elliptical rod structure
 - Hope to understand pulsed heating
- MIT 17 GHz Test Stand nearing completion
 - Tests of metallic and dielectric structures
 - Users welcome!