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The beam-beam limit is a key issue both in operation and design of e
+

e
− factories. The luminosity is limited

by saturation of the beam-beam parameter. Two type of possibilities, in which coherent and/or incoherent
effects causes the limit, are discussed. One is the coherent motion between the two beams, in which the
betatron oscillations of the two beams coupled and a mode becomes unstable. The other is incoherent beam
size enlargement due to the nonlinear force of the beam-beam interactions. The coherent motion is linear effect
in the lowest approximation, and the nonlinear force, if anything, make suppress the coherent motion. The
incoherent effect is essentially nonlinear. The beam-beam force has a large tune shift which means a strong
linear coupling of the two beam, while it has also a strong nonlinearity: i.e., the tune spread is the same order
as the tune shift. Therefore it is very interesting how these two effects behave in the beam-beam phenomenon.
We discuss the beam-beam limit from the viewpoint both of the coherent and incoherent effects using computer
simulations.

1. Introduction

The beam-beam limit is characterized by so-called
the beam-beam parameter, which is defined by

ξx(y),± =
N∓re

γ±

β

σx(y)(σx + σy)
. (1)

It increases proportional to the beam current for low
beam current at which the beam sizes are kept. How-
ever the beam-beam parameter increases with a slower
rate or is saturate at a value, once the bunch current
exceeds a threshold. This phenomenon is called the
beam-beam limit. Actually the beam-size is enlarged
by the beam-beam interaction over the threshold, with
the result that the beam-beam parameter and the lu-
minosity is reduced to be less than the geometrical
value. The luminosity is expressed by

L =
N+N−f

4πσxσy

≈
γ±

2re

(

N±ξy,±

βy,±

)

frep. (2)

We try to understand and predict the beam-beam
limit using computer simulations. There is no ana-
lytic method to predict the limit value with a suffi-
cient accuracy, because it is a strong nonlinear phe-
nomenon. Two types of simulation methods are used
to study. One is weak-strong simulation in which one
beam is assumed to be fixed charge distribution and
another beam is represented by macro-particles. Sec-
ond is strong-strong simulation in which both beams
are represented by macro-particles. Weak strong sim-
ulations had been used to design particle factories,
because strong-strong simulations have been suffered
by numerical noise due to poor computer power in
those days. It is not clear whether the weak-strong
simulation can predict the beam-beam limit. Above
all, we do not understand the mechanism of the beam-
beam limit, therefore we did not know which method
predict the beam-beam limit. The strong-strong simu-
lation can take into account all of possible mechanism
by which the beam-beam limit is caused.

The beam-beam limit is considered to be caused by
coherent motion or incoherent effects. Which effect is
essential depends on the parameters. We discuss how
the effect play roles in the beam-beam limit. Param-
eter used in our study is shown in Table I.

LER HER

Beam Energy E 3.5 8.0 GeV

Beam current I 9.4 4.1 A

Particles/bunch N 11.8 5.13 ×1010

Number of bunches Nb 5018

Horizontal emittance εx 18 - 33 nm

Vertical emittance εy 0.18 - 0.33 nm

Bunch length σz 3 mm

Horizontal β at I.P βx 15 - 30 cm

Vertical β at I.P βy 3 mm

Crossing angle θx 0(crab cav.) - 30 mrad

Beam-beam parameter ξ 0.05 - 0.26

Circumference C 3016.26 m

Luminosity L 1 - 6×1035 cm−2s−1

Table I Machine parameters of SuperKEKB.

2. Beam-beam limit due to coherent
motion

The coherent motion discussed here is a collective
betatron motion with a correlation of two beams.
Spectra of the coherent modes are discussed in Refs.[1,
2]. Tune difference between π-σ mode spectra were
main subject. The beam-beam limit due to the co-
herent π mode was discussed in Ref. [3] for KEKB.
The study is performed by a strong-strong simulation
in two-dimensional space.

In our parameter, coherent instability is observed
for only case of short bunch length or in two dimen-
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Figure 1: Beam-beam parameter estimated by luminosity
for various current. Cross and diamond points denote the
beam-beam parameter given by PIC and Gaussian
models, respectively.
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Figure 2: Evolution of vertical beam size and dipole
amplitude. The beam size and dipole amplitude given by
PIC and Gaussian models are depicted in pictures (a)
and (b), respectively. Dipole motions during shorter
period, which are depicted in the picture (c) and (d),
shows coherent mode.

sional simulation. Figure 1 shows the beam-beam pa-
rameter obtained by two-dimensional Gauss and PIC
models. Gauss model shows unlimited beam-beam pa-
rameter at least up to 0.2, while PIC method gives a
beam-beam limit around 0.05. Figure 2 shows the
vertical beam size and dipole amplitude given by PIC
and Gaussian models. In PIC model, the dipole am-
plitude grows about design beam size ∼ 1 µm and the
rms vertical beam size also grows as is shown in pic-
ture (a). The coherent instability, which is observed
for larger beam-beam parameter than 0.05, causes the
beam-beam limit. Such a coherent instability has been
seen in several strong-strong code with PIC model [4].
Gaussian model does not show remarkable coherent
motion as is shown in picture (b). Pictures (c) and
(d) show detail structures of the dipole motion for PIC
and Gaussian models. PIC model gives motion of the
coherent π mode, while Gauss model gives σ mode.
These features reflect the behavior of the beam-beam
limit in Figure 1.

Figure 3 shows Fourier amplitude of the dipole mo-
ment in the Gaussian and PIC models. σ and π mode
spectra are seen in the both models, but their behav-

iors are different. σ mode always enhances for π mode
but does not grow remarkably in the Gaussian model,
therefore the beam-beam system is kept to be stable.
In the PIC model, π mode enhances for σ mode and
grows strongly for high current.

Though the behavior may depend on tune operating
point, such remarkable difference is interesting and
may be a suspicious feature of the Gaussian model.

The coherent motion are expected to be smeared
for an operation with different tune. Figure 5 shows
luminosity evolution for an operation with different
tune. The tune operating points are (0.506,0.545) and
(0.515,0.58) for LER and HER, respectively. These
operating points are used at the present KEKB. The
figure shows that the luminosity is recovered by the
tune difference.

There were many discussions whether the PIC
model is reliable for stability during several thousand
turn. Numerical noise may enhance coherent motions
or particle diffusion. The feature of the coherent mo-
tion is confirmed by several codes [4] as is already men-
tioned, and is not changed for statistics and choice of
mesh in PIC model. A numerical diffusion is exam-
ined using weak-strong simulations [5]. Luminosity
and vertical beam size obtained by simulations with
the exact formula [6] and PIC method are compared
for a given Gaussian strong beam. Figure 6 shows the
luminosity and beam size evolutions for exact formula
and for PIC method. There is no problem for the
numerical diffusion of PIC model.

We take into account the bunch length in the beam-
beam effect. Three dimensional simulation is per-
formed to take into account. Crossing angle is not
considered first. Figure 7 shows luminosity evolution
for some cases of bunch lengths. Two levels of beam-
beam parameter are seen in the figure: one is 0.1 for
σz = 1.5 mm and another is 0.03 for σz = 0.3, 0.6
and 1 mm. The beam-beam parameter for the short
bunch length σz ≤ 1 mm is similar as that obtained by
the two-dimensional simulation. The coherent motion
seen in the two-dimensional simulation is observed for
the cases of short bunch length. The beam-beam pa-
rameter for σz = 1.5 mm is also similar as that of
the design value, σz = 3 mm. The coherent motion
disappears for longer bunch length ≥ 1.5 mm. The
threshold of the bunch length seems to be about βy/2,
since the vertical beta function is 3 mm. This result
may be due to spread of beam-beam tune shift along
the longitudinal direction.

3. Incoherent effect

As is shown in previous section, coherent motion
disappear due to some reason: smear due to nonlin-
earity or frequency spread seems to be one of the ma-
jor reason. In this case, what kind of mechanism can
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Figure 3: Fourier spectra for the vertical dipole motion obtained by PIC model. Pictures (a)-(e) are depicted for the
nominal beam-beam parameter, ξ = 0.043, 0.065, 0.086, 0.13 and 0.17.
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Figure 4: Fourier spectra for the vertical dipole motion obtained by Gauss model. Pictures (a)-(e) are depicted for the
nominal beam-beam parameter, ξ = 0.086, 0.13, 0.17, 0.22 and 0.26.
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Figure 5: Evolution of the beam-beam parameter for
different tune. LER and HER ae operated with the tune,
(0.506,0.545) and (0.515,0.58), respectively.
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Figure 6: Evolution of luminosity and vertical beam size
given by weak-strong simulation using PIC method and
exact solution for a Gaussian strong beam distribution.

limits the luminosity? Actually, the beam-beam pa-
rameter for long bunch shown in Figure 7 is limited
around 0.1. Any coherent motion was not observed in
the simulations: some kind of incoherent effects limit
the beam-beam parameter. We discuss beam-beam
limit due to the incoherent effects.

Figure 8 shows the beam-beam parameter and beam
sizes for various current obtained by Gaussian and
PIC model. The horizontal axis in the figurer is rep-
resented by so-call the nominal beam-beam parameter
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Figure 7: Evolution of luminosity for various bunch
length. For σz = 1.5 mm, the simulations are performed
for numbers of slices, 5 and 10 with the PIC method.

calculated by Eq.(1). The results given by the Gaus-
sian approximation and by the PIC method are very
different. Remarkable enlargement was not seen in
the horizontal beam size, but was seen in the vertical
beam size. The enlargement given by the PIC method
was stronger than that by the Gaussian approxima-
tion. Gaussian approximation gave a high beam-beam
parameter of more than 0.2, while the PIC method
gave saturation of the beam-beam parameter around
0.1. No coherent motion was seen in first and sec-
ond moments: 〈xi〉 and 〈xixj〉 in both methods. The
weak-strong simulation with Gaussian fixed beam [7]
gave similar results as the Gaussian strong-strong sim-
ulation. Figure 9 shows the evolution of the luminos-
ity for various current obtained by the PIC simula-
tion. The behavior of luminosity is gentle for ξ = 0.04
and 0.08, while sudden changes are sometimes seen for
ξ ≥ 0.12.

Figure 10 shows the variation of the particle dis-
tribution during the sudden change of the luminosity.
Both of electron and positron distributions are de-
picted in the figure. Both distributions are enlarged
and distorted from a Gaussian simultaneously while
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Figure 9: Evolution of luminosity for various current.
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Figure 10: Evolution of the vertical distribution of
electron and positron beams. The distributions after 150,
170, 200 and 30,000 turns are depicted in picture (a), (b),
(c) and (d), respectively.

overlapping each other. The final distributions after
25,000 turns are seen in Figure 10(d). The distribu-
tion of positrons is slightly broader than that of elec-
trons, due to the difference in the radiation damping
time. Both distributions, which are distorted from a
Gaussian mainly in the tail part, are considered as an
equilibrium distribution of the two colliding beams.

We now think that the beam-beam limit is deter-
mined by the equilibrium distribution of two beams,
but is not caused by coherent motion. To confirm

this idea, we executed a weak-strong simulation using
the particle distribution obtained by the strong-strong
simulation. If the beam size enlargement is due to
an incoherent phenomenon, the same results of lumi-
nosity and size should be obtained in the final stage.
The strong beam, which is the electron beam in the
figure, is given by the final distribution of the strong-
strong simulation using the PIC code, while the weak
positron beam is initialized with the designed Gaus-
sian distribution. In this approach, any coherent mo-
tion, even a small breathing, is suppressed. Figure 11
shows the evolution of luminosity and beam size given
by the weak-strong simulation. The luminosity is at a
similar level after 40,000 turns as that of the strong-
strong simulation as is shown in Figure 11(a). The
evolution of the beam sizes for the weak-strong and
strong-strong simulations are shown in Figure 11(b)
and (c), respectively. The size of the positron beam
in the two simulations grows to the closed value. The
two luminosities do not coincide perfectly, but have a
difference of 15%. Figure 11 (d) shows the evolution
of the size of the positron beam that interacts with a
fixed Gaussian electron beam. The beam size is much
less than that for the distorted beam. This means
that the distortions are destructive to each other: if
one beam is distorted from a Gaussian, the other beam
is forcefully distorted as well.

It is interesting to see Poincaré plot for the dis-
torted and Gaussian distribution in the weak-strong
simulation. Figure 12 shows that Poincaré plot in
y − py phase space. This and next two figures are
obtained by two-dimensional simulation for the sim-
plicity. Ten particles without x and z amplitudes are
tracked with interacting the three types of beam: dis-
torted distribution obtained by the strong-strong sim-
ulation, Gaussian distribution whose force are calcu-
lated by PIC method, and Gaussian whose force is
calculated by exact formula with complex error func-
tion, where the radiation damping and excitation are
cut. The results of pictures (b) and (c) given by PIC
and exact formula, respectively for Gaussian distribu-
tion well coincide. The trajectories in picture (a) for
distribution obtained by the strong-strong simulation
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Figure 11: Evolution of the beam-beam parameter and vertical size of electron (blue) and positron (red) beams.
Evolutions of ξ for the weak-strong and strong-strong simulation is depicted in (a), where the final distribution of the
strong-strong simulation is used as fixed distribution in the weak-strong simulation. Evolutions of the beam size for
weak-strong and strong-strong simulations are depicted in (b) and (c), respectively. Evolution of the size of positron
beam that interacts with fixed Gaussian electron beam is depicted in (d).

is different from pictures (b) and (c) for Gaussian, but
They do not give clear information for the mechanism
of the beam-beam limit.

We next discuss the diffusion of the beam-beam
system. Figures 13 and 14 show evolution for the
beam-beam parameter and vertical beam size, respec-
tively. In each pictures, the evolutions in the case of
including the damping and excitation of synchrotron
radiation and of Hamiltonian system without the ra-
diation are depicted. Three pictures in each figure
are depicted for distorted distribution obtained by the
strong-strong simulation, Gaussian distribution whose
force are calculated by PIC method, and Gaussian
whose force is calculated by exact formula with com-
plex error function. For the beam-beam system with-
out synchrotron radiation, luminosity and beam size
are kept to be an initial value: namely, diffusion due
to nonlinearity is weak. The behaviors in the case of
including the radiation are different each other. They
have already been seen in Figure 11. Synchrotron
radiation play an important role for the beam-beam
limit. Additionally, structure of the phase space for
the distorted distribution is sensitive for the diffusion.

4. Crossing angle

In present KEKB, finite crossing angle scheme has
been adopted. Achievement of the design luminosity
1034 cm−2s−1 at KEKB showed that the finite cross-
ing angle scheme was no problem to achieve the beam-
beam parameter up to 0.05. In previous section, the
beam-beam limit without crossing angle was about
0.1 in the three dimensional simulation. The cross-
ing collision scheme should be reviewed in the point
of view of progress toward higher luminosity. Crab
cavity makes collision with finite crossing angle possi-
ble to pretend to be that of zero crossing angle. This
study gives an answer whether the crab cavity should
be installed.

The collision with crossing angle is treated by
Lorenz boost to a head-on frame from the laboratory
frame [8, 9]: i.e., particles in the beam are transferred

to the head on frame, experience the collision, and
are transferred to laboratory frame by the inverse of
the Lorenz boost. In the laboratory frame, s axes of
two beams are chosen to be their moving directions,
and the electro-magnetic field of a beam is formed
on the plane perpendicular to its s axis. The beam-
beam force which the other beam experiences is not
transverse direction, and the timing when the beam
experiences the force depends on the positions of the
two beams. In the head-on frame, s axes of two beams
are coincide except that their directions are opposite.
Beam particles in the two beams basically move along
s direction and beam-beam force is perpendicular to
s axis. The principle axis of the beam ellipsoid does
not coincide with s direction: that is, 〈xz〉 is not zero
for the case of horizontal crossing.

The Lorentz transformation from the laboratory
frame to the head-on frame is given for a half crossing
angle θ by

x∗ = tan θz +

(

1 +
p∗

x

p∗
s

sin θ

)

x

y∗ = y + sin θ
p∗

y

p∗
s

x

z∗ =
z

cos θ
−

H∗

p∗
s

sin θx

p∗
x =

px − tan θH

cos θ
(3)

p∗
y =

py

cos θ

p∗
z = pz − tan θpx + tan2 θH,

where

H = (1 + pz) −
√

(1 + pz)2 − p2
x − p2

y

ps =
√

(1 + pz)2 − p2
x − p2

y

. A star designates a dynamical variable in the head-
on frame. H∗ and p∗

s are H(p∗) and ps(p
∗), respec-

tively. Note that the x∗ and y∗ axes are defined in
the same direction for both beams, while the s∗ axis
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Figure 12: Poincaré plot for the distorted and Gaussian distributions given by two-dimensional simulation. Picture (a)
is obtained by PIC method for the distorted distribution. Pictures (b) and (c) are obtained by PIC method and exact
error function formula, respectively, for Gaussian distribution.
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Figure 13: Evolution of the beam-beam parameter given by the two dimensional simulation. Two lines which
correspond to ON/OFF of the synchrotron radiation are depicted. Picture (a) is obtained by PIC method for the
distorted distribution. Pictures (b) and (c) are obtained by PIC method and exact error function formula, respectively,
for Gaussian distribution.

is defined in opposite directions, since the two beams
travel in opposite directions.

The linear part of the transformation is expressed
by a matrix

Mcrs =



















1 0 0 0 tan θ 0

0 1/ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 1/ cos θ 0 0

0 0 0 0 1/ cos θ 0

0 − tan θ 0 0 0 1



















. (4)

These transformations are not symplectic: determi-
nant of the transfer matrix Mcrs is not 1, but cos−3 θ.
The fact is due to that Lorenz transformation is not
symplectic for the accelerator coordinate, because the
Hamiltonian is divided by a reference momentum.
This is not problem because the inverse factor of cos3 θ
is applied by the inverse transformation.

By including this transformation Eq.(3) or (4) into
the map of arc section, the simulation is done without
any change, except that the beam shape has gradi-
ent in the x − z plane. The gradient is considered
automatically in the three dimensional simulation.

Figure 15 shows the relation of the beam-beam pa-
rameter ξ and the bunch population for collision with
and without crossing angle, where a half crossing an-
gle is 11 mrad. These simulations are performed with
present KEKB parameter: that is, βx/βy is 60/0.7 cm

and σz = 0.7 cm. Pictures (a) and (b) were obtained
by the weak-strong and strong-strong simulations, re-
spectively. The beam-beam limit is 0.1 or > 0.2 for
collision without crossing angle as is discussed in the
previous section. ξ at crossing collision is similar be-
havior for the both of two simulations: that is, ξ is
saturated around 0.06.

Figure 16 shows the beam-beam parameter for vari-
ous crossing angle. The geometrical luminosity, which
is also plotted in the figure, has loose dependence for
the crossing angle. The simulated luminosity is peak
structure near zero-crossing angle for the simulations.
The peak structure of the strong-strong simulation is
narrower than that of the weak-strong simulation.

The beam-beam parameters at 11 mrad for the
weak-strong and strong-strong simulations coincided
each other, while they do not concide for other cross-
ing angles. Probably the coincidence is accidental.

These results suggest that the collision performance
for zero crossing angle is much better than that of
finite crossing angle. Crab cavity creates a kind of
dispersion x = ζxz concerning z. The dispersion cor-
responds to (1,5) and (6,2) components of the trans-
fer matrix, which has the same structure as that be-
tween the laboratory and head-on frames for collision
of finite crossing angle. This means that the colli-
sion with a finite crossing angle can be replaced by
that with zero crossing angle using crab cavities effec-
tively. These results show that crab cavities improve
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Figure 14: Evolution of the vertical beam size given by the two dimensional simulation. Two lines which correspond to
ON/OFF of the synchrotron radiation are plotted. Picture (a) is obtained by PIC method for the distorted
distribution. Pictures (b) and (c) are obtained by PIC method and exact error function formula, respectively, for
Gaussian distribution.
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Figure 15: Beam-beam parameters for zero and finite
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weak-strong and strong-strong simulations, respectively.
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Figure 16: Beam-beam parameters for various crossing
angle. Three points depict geometrical luminosity and
those given by the weak-strong and strong-strong
simulations.

the luminosity drastically.

The reason why the crossing angle makes worse the
luminosity is discussed now. We focus the nonlinear
diffusion as is done in previous section. The weak-
strong simulation with Gaussian model is used here.

Needless to say, it is better to use the distribution
obtained by the strong-strong simulation. The PIC
weak-strong code is under-construction. Figure 17
shows evolution of the luminosity for zero and finite
crossing angles. Pictures (a) and (b) are depicted lu-
minosity evolutions with/without synchrotron radia-
tion damping, respectively, for tune operating point of
(0.508,0.55). The operating point is closed to that of
LER for the present KEKB. For zero crossing angle,
diffusion due to nonlinearity is not seen as is discussed
in previous section. For finite crossing angle, diffusion
is clearly seen. Including the synchrotron radiation,
the diffusion is emphasized further more. Pictures
(c) and (d) are depicted for the tune operating point
(0.518,0.58). The operating point is closed to that of
HER for the present KEKB. The diffusion rate due to
nonlinearity, which depends on the operating point, is
worse than previous operating point. The beam-beam
limit or total diffusion including synchrotron radiation
is also worse than the previous point.

The crossing angle makes an occurrence of the non-
linear diffusion in both of vertical and horizontal beam
sizes. Figure 18 shows the diffusion of the horizontal
and vertical beam sizes due to the crossing angle. It
is interesting that the crossing angle which causes lin-
ear x−z coupling also affects the vertical diffusion. A
slight diffusion is seen for zero crossing angle. It is not
seen at all in two-dimensional simulation as shown in
Figure 18 (c).

Similar diffusion is also caused by x − y coupling.
Figure 19 shows that diffusion seen in the beam-beam
parameter with x − y coupling, r4 = 0.4. Nonlinear
diffusion seen in picture (a) shows an interesting fea-
ture. The strength of the diffusion is different between
two and three dimensional simulation: i.e. it is week
for 2 dim. but is clear for 3 dim. Number of dimension
contributes the diffusion.

Such the nonlinear diffusion due to crossing angle
were not seen in the case of collision with zero crossing
angle. There was no diffusion for not only Gaussian
strong beam but also distorted beam as is shown in
Figure 13. We remember that the diffusion at zero
crossing angle was very weak for its pure Hamiltonian
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Figure 17: Diffusion due to crossing angle. Pictures (a) and (b) are depicted luminosity evolutions with/without
synchrotron radiation damping, respectively, for tune operating point of (0.508,0.55). Pictures (c) and (d) are depicted
with/without synchrotron radiation damping, respectively, for the tune operating point (0.518,0.58).

0

50

100

150

0 10000 20000 30000 40000 50000

si
gx

 (
um

)

turn

0 mrad

15 mrad

(a)     Radiation OFF; Tune=(.508,.55)

0

2

4

6

8

10

0 10000 20000 30000 40000 50000

si
gy

 (
um

)

turn

0 mrad

15 mrad

(b)     Radiation OFF; Tune=(.508,.55)

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000

si
gy

 (
um

)

turn

2 dim.

3 dim.(c)
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dimensional simulations for zero-crossing angle and no synchrotron radiation.
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Figure 19: Diffusion of luminosity horizontal and vertical
beam size due to crossing angle. Pictures (a) and (b) are
depicted evolutions of the beam-beam parameter with
and without synchrotron radiation, respectively. In each
picture, two lines correspond to two and three
dimensional simulations.

system but was enhanced by synchrotron radiation
strongly. It should be note that the simulation was
based on two dimensional PIC model. It is interesting
to see the nonlinear diffusion for three dimensional
PIC model.

So far, we neglected the difference between true
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Figure 20: Evolution of luminosity for head-on collision
without crossing angle and crab collision with a finite
crossing angle, 11 mrad.

head-on collision without crossing angle and crab col-
lision with a finite crossing angle. The nonlinear term
of the transformation in Eq.(3) should be studied to
confirm the validity of crab crossing. Figure 20 shows
the luminosity evolution for head-on collision without
crossing angle and crab collision with a finite cross-
ing angle, 11 mrad. Two lines completely agreed each
other: that is, the crab collision realizes the same per-
formance as head-on collision without crossing angle.

5. Beam-beam tail

We have to discuss beam-beam tail which affects
beam life time [10, 11]. Weak-strong simulation is
used for the estimation of the halo. The weak-strong
simulation was done with 500 macro-particle and 106
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turns. Figure 21 shows particle distribution of beam
As is discussed in previous section, a deviation from

Gaussian distribution was essential in the beam-beam
limit for the luminosity. The mechanism of the lumi-
nosity limit was due to diffusion of particle distribu-
tion. The same mechanism should affect halo forma-
tion, namely the beam life time. PIC simulation is
also essential for the halo prediction.

6. Summary

Mechanisms of the beam-beam limit has been dis-
cussed using various simulation methods. Coherent
motion can be one of origins of the beam-beam limit.
In our simulation, coherent motion limited the lumi-
nosity for short bunch length σz < βy/2. The coherent
motion disappear for longer bunch length perhaps due
to the tune spread along the bunch length.

When the coherent motion is smeared, coherent ef-
fect limited the luminosity. Particle distribution of
colliding beams is distorted by the beam-beam inter-
action, therefore the distortion limited the luminos-
ity. We investigated pure nonlinear diffusion irrele-
vant to the radiation damping and excitation. For
the collision without crossing angle, the diffusion is
very weak not only for Gaussian beam but also for
distorted beam. Radiation excitation enhances beam
size enlargement for the distorted beam.

Crossing angle, x-y coupling or maybe other errors
in the lattice of arc cause nonlinear diffusion due to
coupling to the beam-beam interaction. The diffusion

was investigated for Gaussian beam. Perhaps it will
be also seen for distorted beam. These studies are
useful for the beam-beam limit in proton beam.
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Figure 21: Contour plot of transverse particle density in a bunch obtained by the weak-strong simulation. Left and
middle pictures are depicted for present KEKB parameter with and without crossing angle. Right picture is depicted
for Super KEKB without crossing angle.
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