Electron Cloud Observations

K.C. Harkay
Advanced Photon Source, ANL

30th Advanced ICFA Beam Dynamics Workshop
on High Luminosity e+e- Collisions

Stanford Linear Accelerator Center,
Outline

• Brief history
• Electron cloud
 - Effects
 - Production
 - Diagnostics
• Experimental observations
• Cures
• EC and electron beams
• Summary
Introduction

- A growing number of observations of electron cloud effects (ECEs) have been reported in positron and proton rings.
- Low-energy, background electrons ubiquitous in high-intensity particle accelerators.
- Amplification of electron cloud (EC) can occur under certain operating conditions, potentially giving rise to numerous effects that can seriously degrade accelerator performance.
- EC observations and diagnostics have contributed to a better understanding of ECEs, in particular, details of beam-induced multipacting and cloud saturation effects.
- Such experimental results can be used to provide realistic limits on key input parameters for modeling efforts and analytical calculations to improve prediction capability.
References & Workshops

Workshops, past:
• Multibunch Instabilities Workshop, KEK, 1997 KEK Proc. 97-17
• Two-Stream ICFA Mini Workshop, Santa Fe, 2000 http://www.aps.anl.gov/conferences/icfa/two-stream.html
• Two-Stream Workshop, KEK, 2001 http://conference.kek.jp/two-stream/
• ECLoud02, CERN, 2002 http://slap.cern.ch/collective/ecloud02/

Workshops, future (ICFA):
• Beam-Induced Pressure Rise, BNL, Dec. 9-12, 2003 (S.Y. Zhang, BNL)
• ECLoud04, Napa, CA, Apr. 19-22, 2004 (M. Furman, LBNL)
Origins

Electron cloud effects (ECEs) were first observed ~30 yrs ago in small, medium-energy proton storage rings; described as: Vacuum pressure bump instability, e-p instability, or beam-induced multipacting:

- **BINP Proton Storage Ring** [G. Budker, G. Dimov, and V. Dudnikov, Sov. Atom. E. 22, 5 (1967); see also review by V. Dudnikov, PAC2001, 1892 (2001)]
- **CERN Intersecting Storage Ring (ISR)** [Hereward, Keil, Zotter (1971)]
- **Proton Storage Ring (PSR)** [D. Neuffer et al. (1988, 1992)]

First observation in a positron ring ca. 1995: Transverse coupled-bunch instability in e+ ring only and not in e- ring:

- **IHEP Beijing e+/e- collider (BEPC)**: experiments repeated and PF results verified [Z.Y. Guo et al., PAC1997, 1566 (1997)]

See article by F. Zimmermann, *ICFA BD Newsletter* No. 31, Aug. 2003
Origins (cont.)

SLAC PEP-II and KEKB B-factories both under development; became concerned about ECEs:

Codes developed to model EC generation and instabilities:
- *PEI*, KEK (K. Ohmi)
- *POSINST*, LBNL (M. Furman et al.)
- *ECL O U D*, CERN/SLAC (F. Zimmermann et al.)

- PEP-II: Decision made to coat chambers with low-δ TiN
- KEKB: Solenoid winding-machine designed, later entire chamber wound by hand

- Calculated predictions of a BIM resonance in LHC, also under development, resulted in a crash program at CERN to study ECEs.

We were asked why we don’t observe ECEs in the APS with Al chambers (high δ) and positron beams? Started experimental program in 1997-8 first with e+ beam, then since 1998 with e- beam.
Outline

- Brief history
- **Electron cloud**
 - Effects
 - Production
 - Diagnostics
- Experimental observations
- Cures
- EC and electron beams
- Summary
Electron cloud effects

- Vacuum and beam lifetime degradation through electron-stimulated gas desorption
- Collective instabilities
 - Transverse coupled-bunch instability (electron cloud “wake”)
 - Single-bunch instability; emittance blow-up (“head-tail” instability; luminosity degradation)
 - e-p instability (coupled oscillations)
- Electrons trapped in spurious magnetic fields, e.g., distributed ion pump leakage field (CESR)
- Cloud-induced noise in beam diagnostics (e.g., wire scanners, ion profile monitors, etc.)
- Enhancement of other effects, i.e., beam-beam (?)
Electron cloud production

- **Primary**
 - Photoelectrons
 - Ionization of residual gas
 - Beam loss on chamber walls

- **Secondary**
 - Secondary emission
 (δ is secondary electron yield coefficient)
 - \(\delta_0 \sim 0.5 \)

Figure courtesy of R. Rosenberg

Figure courtesy of R. Kirby
Electron cloud production (cont.)

<table>
<thead>
<tr>
<th>SURFACE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOTOOELECTRON YIELD ((E_e, \theta_\gamma))</td>
</tr>
<tr>
<td>PHOTON REFLECTIVITY ((E_\gamma, \theta_\gamma))</td>
</tr>
<tr>
<td>SECONDARY EL. YIELD ((\delta) (E_\gamma, \theta_\gamma))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAMBER GEOMETRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTECHAMBER</td>
</tr>
<tr>
<td>END ABSORBERS</td>
</tr>
<tr>
<td>APERTURE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MACHINE PARAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUNCH CURRENT</td>
</tr>
<tr>
<td>BUNCH SPACING</td>
</tr>
<tr>
<td>B-FIELD VS. DRIFT</td>
</tr>
</tbody>
</table>

Photoelectrons can dominate the cloud if there is no antechamber.
Beam-induced multipacting

- $\delta > 1$ required for amplification
- Energy distribution of SE leads to more general BIM condition (first suggested by S. Heifets and M. Furman)
 [see also K. Harkay, R. Rosenberg, PRST-AB 6, 034402 (2003) and K. Harkay, L. Loiacono, R. Rosenberg, PAC2003 (2003)]

Schematic courtesy of G. Arduini
Winding solenoid field in the LER: resonances

if $e^-_{tof} = t_{bb}$ → resonance effect

Resonance multipacting in solenoid field when the electron time of flight is equal to the bunch spacing

e^- density at by-2 and 4 RF buckets spacing, A. Novokhatski and J. Seeman (PAC03 paper)

e^- density at by-2 RF buckets spacing, Y. Cai and M. Pivi (PAC03 paper)

Figure 5: Electron cloud saturated density ($N=2, 4$).

Figure 6: Growth/damping rates for ($N=2, 4$).
Diagnostics

Standard beam diagnostics
- Vacuum pressure
- Bunch-by-bunch tune
- Beam size

Dedicated diagnostics
- EC on wall: Retarding field analyzer (RFA)

Radiation fan at det. #6 for $E_y \geq 4$ eV

mounting on 5-m-long APS chamber, top view, showing radiation fan from downstream bending magnet

mounting on APS Al chamber behind vacuum penetration (42 x 21 mm half-dim.)
Advantage of RFA to biased electrode

RFA, normal (top) vs. angular (bottom) incidence (collector biased +45 V)

Biased BPM, normal incidence

EC in chamber is not shielded from biased grid or collector

Varying electrode bias voltage
- Changes incident electron energy
- Changes collection length

Difficult to deduce true wall flux
Outline

- Brief history
- Electron cloud
 - Effects
 - Production
 - Diagnostics
- **Experimental observations**
- Cures
- EC and electron beams
- Summary
Experimental observations

- Cloud build-up and saturation
- Vacuum pressure rise
- Surface conditioning
- Z-dependence
- Secondary electron (SE)- vs. photoelectron (PE)-dependence
- Proton rings
 - CERN SPS with LHC-type beams
 - Proton Storage Ring (PSR)
- Electron decay time
- EC-induced collective effects
Cloud build-up and saturation

KEKB: EC saturates after 20-30 bunches per tune shift ($4\lambda_{rf}$ bunch spacing)

APS: EC saturates after 20-30 bunches (middle of straight); level varies nonlinearly with bunch current ($7\lambda_{rf}$ bunch spacing)

![Graph showing cloud build-up and saturation](chart.png)

Vacuum pressure rise

Pressure rise also observed in KEKB, SPS, APS (and RHIC?)
Surface conditioning

Wall flux at APS reduced 2x after 60 Ah of surface conditioning, equivalent to 10^{-3} C/mm2, consistent with CERN data (Cu) (APS chamber Al)
Z-dependence

APS: Measured RFAs as function of bunch number, spacing, and distance from photon absorber (2 mA/bunch).

KEKB: EC with space charge in solenoid modeled with 3D PIC code.

Figure courtesy of L. Wang, H. Fukuma, K. Ohmi, E. Perevedentsev, APAC 2001, 466 (2001)
SE- vs. PE-dominated

No BIM and nearly linear EC density observed in BEPC e+ ring

BEPC data courtesy of Z. Guo et al.
CERN SPS – LHC-type beams

Measured EC distribution in special dipole chamber fitted with strip detectors

Qualitatively confirmed simulation showing two stripes

5.0x10^{10} p/b

6.0x10^{10} p/b

7.9x10^{10} p/b

8.6x10^{10} p/b

Proton Storage Ring (PSR)

LANL Electron Sweeper (~500 V pulse)
80MHz fast electronics added

Prompt electron signal due to trailing-edge multipactor; swept electrons survive gap
(7.7 μC/pulse, bunch length = 280 ns; repeller –25 V)

Courtesy R. Macek A. Browman, T. Wang
Decay time of electron cloud

KEKB

4 buckets spacing, 32 bunches
Test bunch at 4,8,12th bucket apart from train

PSR

τ = 170 ns

KEKB: 25-30 ns vs.
PSR: 170 ns decay time

Electron trapping mechanism in quadrupole

Particular attention at quadrupoles where electron trapping mechanism is possible (magnetic mirror, see also Jackson .. !)

PEP-II arc simulations + skew quadrupole. Decay time after long gap. By-2 bucket spacing, 10 out of 12 bunches with mini-gaps, 10^{11} ppb. Arc quadrupole gradient 4.5 T/m and skew quadrupole 2.5 T/m. Elliptic vacuum chamber 4.5 x 2.5 cm with antechamber.

PEP-II - electron cloud studies – Oct 2003

$\frac{v_{\parallel,0}}{v_{\perp,0}} = \left(\frac{B_{\text{pipe}}}{B_0} - 1 \right)^{1/2}$

Slide courtesy of M. Pivi
EC-driven collective effects

<table>
<thead>
<tr>
<th></th>
<th>Horizontal plane</th>
<th>Vertical plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEK PF</td>
<td>--</td>
<td>coupled bunch (CB)</td>
</tr>
<tr>
<td>BEPC</td>
<td>--</td>
<td>CB</td>
</tr>
<tr>
<td>KEKB LER</td>
<td>CB</td>
<td>CB; single bunch</td>
</tr>
<tr>
<td>CESR</td>
<td>CB (DIPs)</td>
<td>--</td>
</tr>
<tr>
<td>PEP II LER</td>
<td>single</td>
<td>--</td>
</tr>
<tr>
<td>APS (e+)</td>
<td>CB</td>
<td>--</td>
</tr>
<tr>
<td>PSR</td>
<td>--</td>
<td>single</td>
</tr>
<tr>
<td>SPS-LHC</td>
<td>CB</td>
<td>single</td>
</tr>
<tr>
<td>PS-LHC</td>
<td>Single</td>
<td>--</td>
</tr>
<tr>
<td>DAΦNE</td>
<td>(likely below threshold)</td>
<td></td>
</tr>
</tbody>
</table>

See also article by H. Fukuma, *ICFA BD Newsletter* No. 31, Aug. 2003
Contributions to understanding ECEs come from a growing community

Modeling efforts and benchmarking continue to be refined as more physics added:

- Accelerator physics
- Vacuum, surface chemistry
- Plasma wakefield accelerators
- Heavy ion fusion
- Photocathode materials science, electron guns
 - Modeling electron dynamics in MV fields requires accurate EC distribution
Electron cloud and other effects

- Combined phenomena (enhancement) of beam-beam and electron cloud (E. Perevedentsev, K. Ohmi, A. Chao, 2002)
- Combined effect of EC and intensity-dependent geometric wakes
- Microwaves as diagnostic or suppressor of cloud (S. Heifets, A. Chao, F. Caspers, F.-J. Decker)
Outline

- Brief history
- Electron cloud
 - Effects
 - Production
 - Diagnostics
- Experimental observations
- Cures
- EC and electron beams
- Summary
Cures

- Avoid BIM resonance through choice of bunch spacing, bunch current, and chamber height; *include SE emission energy in analysis*

- Minimize photoelectron yield through chamber geometry (antechamber, normal incidence)

- Consider passive cures implemented in existing machines:
 - Surface conditioning or surface coatings to minimize δ; e.g. TiN, TiZrV NEG
 - Solenoidal B-field to keep SEs generated at wall away from beam; this works in machines dominated by ECs in the straights (i.e., *not* in the dipoles)

- Implement fast beam feedback

- Continue to refine models and continue to develop and implement electron cloud diagnostics, especially in B-fields
Electron beams - a side note

J. Galayda (ca. 1997) suggested EC can impact electron beams

BIM-like bunch-spacing dependence of EC observed for electron beam, but effect 10x smaller than for positrons, and avg. EC energy 10x smaller (10 eV vs. 100 eV)

Search for User bunch pattern with electron beam at APS:
1. Trains of 4 bunches (11.4 ns) separated by $2\lambda_{rf}$ (5.7 ns)
2. Trains of 4 bunches (11.4 ns) separated by $12\lambda_{rf}$ (34 ns)

Pattern 1 gave twice vacuum pressure, half the beam lifetime, and RFA signals 3-5x higher than pattern 2.
Repeated one year later, effect disappeared (surface conditioning?)

Calculations (POSINST) of power deposition on walls for superconducting ID give up to 1 W/m with electron beam (Al, 4x less with TiN). Code benchmarked for both e+ and e- beams.
Summary

- Electron cloud effects are increasingly important phenomena in high luminosity, high brightness, or high intensity machines
 - Colliders, Storage rings, Damping rings, Heavy ion beams
- **EC generation modeling benchmarked against in situ data:** δ, δ_0, photon reflectivity, and SE energy distributions important
- **Surface conditioning and use of solenoidal fields in field-free regions** are successful cures: will they be enough?
- Work to be done in areas not well understood, for example:
 - Effect of 3D density variation in cloud on instability thresholds
 - Differences in cloud lifetime
 - Combined effects of EC and other dynamics, e.g. beam-beam
- **New effects? Longitudinal? ECE in electron beams?**