SuperKEKB IR Design

Y. Funakoshi, N. Ohuchi, M. Tawada,H. Koiso, Y. Suetsugu, N. Iida, Y. Ohnishi,J. Haba, S. Uno and H. Yamamoto

IR Design Work Overview

- Works already done
 - Choice of basic machine parameters
 - Geometrical boundary conditions
 - Relationship between SuperKEKB and SuperBelle
 - Estimation of required ring acceptance
- Design works in progress
 - Optics design
 - Layout of magnets, dynamic aperture
 - Magnet design
 - Basic design, field quality, leakage field, e.m. force, SOR, interference with other components etc.
 - Damping Ring
 - IP chamber, detector beam background
- Works to be done in near future

Engineering study

- Vacuum design, 3D design of magnets, estimation of HOM, etc.
- Beam monitor system

Design parameters of KEKB and SuperKEKB

	KEKB (design)		SuperKEKB	
	LER	HER	LER	HER
I [A]	2.6	1.1	9.4	4.1
$\beta_{y}^{*}[mm]$	10	10	3	3
ξ _y	0.05	0.05	0.1~0.26	0.1~0.26
L [/cm ² /sec]	1 x 10 ³⁴		2~6 x	x 10 ³⁵
σ_1 [mm]	5	5	3	3

IR basic parameters

	KEKB (design)		SuperKEKB	
	LER	HER	LER	HER
φ [mrad]	11		15	
$\beta_y^*[mm]$	10 10		3	3
$\beta_x^*[cm]$	33	33	20	20
$\epsilon_{x}[nm]$	18 18		24	24

Choice of $\beta_{\textbf{x}}$ and $\boldsymbol{\epsilon}_{\textbf{x}}$

High β_x , low ϵ_x model

$\epsilon_{x}(nm)$	24	24	24	18	12
$\epsilon_{y}(nm)$	0.18	0.18	0.18	0.18	0.18
$\sigma_{z}(mm)$	3	3	3	3	3
$\beta_{\rm x}({\rm cm})$	30	20	15	30	30
$\beta_y(mm)$	3	3	3	3	3
ξ _x	0.14	0.14	0.14	0.19	0.28
ξ _y	0.16	0.20	0.23	0.19	0.23
$L_{b}(10^{31})$	7.7	9.5	11	8.9	11
L (10 ³⁵)	3.9	4.7	5.5	4.5	5.5
$L_{b}(10^{31})$	4.8	6.0	6.6	4.4	1.5
L (10 ³⁵)	2.4	3	3.3	2.2	0.75

Simulation results

Relationship between SuperBelle and SuperKEKB

Estimation of required ring acceptance

- Spread of injected beams determines ring acceptance.
 - Injection error (Horizontal injection is used at KEKB.)
 - Linac beam emittance
 - **Optics parameters at injection point (** β -function)
 - Optics matching (optimization)

Related parameters

- We assume $\alpha=0$ at the injection point.
- Acceptance is determined by the following parameters.
 - **Ring emittance:** ϵ_{xr}
 - 🗆 nr
 - W_s
 - 🗆 ns
 - 🗆 ni
 - **Ring** β: $β_{xr}$
 - Linac beam emittance : ε_{xi}
 - $\Box \quad \text{Injection line } \beta: \beta_{xi}$
- In the following, β_{xi} is determined so as to minimize required acceptance.
- If a part of injection error is shared by the stored beam, required acceptance can be reduces. However, we do not consider this possibility.

x_i: Distance between the center of stored beam and Septum wall -> nr σ_r
w_s: Septum thickness
x₀: Distance between the center of injecting beam and Septum wall ->ns σ_i

Linac beam emittance

When we estimate required acceptance, the most important parameter is the emittance of the injected beam.

Ring β function

• Ring β_x : 90.4m -> 200m

Acc: 4.5μm -> 3.8μm

Linac beam emittance Experiences at KEKB

ε_x = 3.5x10⁻⁷ m @ 3.5GeV (e+)

ε_x = 2x10⁻⁸ m @ 8GeV (e–)

IR aperture requirements

• Do we need a damping ring for positron?

Present assumption: YES

- Electron beam determines required ring acceptance.
 - Horizontal
 - Required ring acceptance
 - □ $A_x = 1.9 \times 10^{-6} m$ (HER)
 - □ $A_x = 2.6 \times 10^{-6} m$ (LER)
 - Coherent oscillation due to injection error
 - □ $A_x = 1.5 \times 10^{-6} m$ (HER)
 - \Box **A**_x=1.8x10⁻⁶m (LER)

Vertical

- Required ring acceptance
 - □ $A_x = 0.8 \times 10^{-7} m$ (HER)
 - □ $A_x = 1.8 \times 10^{-7} m$ (LER)

IR aperture requirements

Strategy

- We will take the "adiabatic construction" scenario into consideration.
- The Linac energy switch will be realized some time later after the IR reconstruction is completed.
- This means that the both rings will have to accept the electron beam.

Strategy for lower beta

Strategy

A common and standard technique for squeezing the beta function further is to move the final focus quads closer to the IP.

Basic idea

The QCS magnets will be located closer to the IP by making the compensation solenoids overlap with them.

Interaction Region Design for SuperKEKB

- (1) The crossing angle is 30 mrad (15mrad \times 2). (cf. KEKB:11mrad \times 2)
- (2) $\beta_x^* = 15 \sim 30$ cm, $\beta_y^* = 3$ mm
- (3) Final focusing quadrupoles (QCS) are located as close to the IP as possible. QCS magnets are overlaid with the compensation solenoids (ES).

Pos. from the IP	KEKB	Super-KEKB
QCS-R	1920 mm	1163.3 mm
QCS-L	1600 mm	969.4 mm

(4) Spatial constraints of the QCS cryostats for the Belle are the same as KEKB.

IR quadrupole magnets G and L

IR-Quad.	<i>G</i> ,	L_{eff}	Bore radi	us,
	T/m	m	mm	
QC2L-HER	3.37	2.0	100.0	Normal
QC2L-LER	5.87	0.6	60.0	Normal
QC1L- <mark>HER</mark>	15.54	0.64	36.0	Normal, Super, Permanent
QCSL	34.24	0.418	90.0	Super
3 correcto	or coils			Super
QCSR	36.01	0.333	90.0	Super
3 correcto	or coils			Super
QC1R- <mark>HER</mark>	11.28	0.64	49.0	Normal, Super, Permanent
QC2R- <mark>LER</mark>	2.77	1.0	70.0	Normal
QC2R- <mark>HER</mark>	7.03	0.6	110.0	Normal

Compensation solenoid

	B_{z}	L,	Bore radi	us,
	Т	m	mm	
ESR-1	3.0	0.15	82.0	Super
ESR-2	3.0	1.05	164.0	Super
ESL-1	5.0	0.175	77.0	Super
ESL-2	2.66	0.52	185.0	Super

QCS and Compensation Solenoid

QCS

- 1. The QCSR center is shifted by 9.2 mm from the Belle axis. For the QCSL, this shift is 21.2mm.
- 2. 6 layer coils (3-double pane cake coils)
- 3. Cable size : 1.09mm(W), 4.08mm (H)
- Field Gradient = 41 T/m @1291A 4.

5.
$$I_{op}/I_c = 73 \%$$

Field quality (@ r=55mm)

 $b_2 = 10000, b_6 = 0.16, b_{10} = 0.61, b_{14} = 0.43$

Compensation Solenoid

- Max. field in the coil with Belle field 1. 3.27 T for ESL-1 @ $I_{op} = 615A$ $I_{op}/I_{c} = 50 \%$
- 2. Max. field without Belle field 4.77 T $I_{op}/I_{c} = 67 \%$

QCS magnets and cryostat for the right side

Electro-magnetic force $4.2 \times 10^4 N \longrightarrow 2.2 \times 10^4 N$ $(0.7 \times 10^4 N \text{ for KEKB})$

Heat load from support system 3.4 W(KEKB) -> 3.5 W

QCS magnets and cryostat for the left side

Electro-magnetic force 13.5×10^4 N $\rightarrow 4.8 \times 10^4$ N (2.4×10⁴N for KEKB)

Heat load from support system 3.2W(KEKB) -> 4.5W

B_z profile along the Belle axis

Belle field profile

QC1 (superconducting magnet)

QC1L

QC1R

QC1R field calculation

Field profile in the magnet

Conductor current=1319A Max. field in the magnet=2.757 T Field gradient=35.9 T/m Effective Magnetic Length=0.2m Leak field on LER beam<2 Gauss Error field:

n	a_n	b_n
1	-0.047	-0.834
2	-0.042	10000.0
3	-0.050	-0.260
4	-0.036	0.040
5	-0.004	-0.113
6	0.076	0.081
7	0.000	-0.074
8	0.005	0.003
9	-0.000	-0.050
10	0.153	-1.581
14	0.014	-5.171
18	-0.093	-3.591

Critical energy of SOR from QCS'

	QCSR	QCSL
Distance from IP to magnet center [mm]	1163.3	969.4
Δx [mm]	34.5	29.1
G [T/m]	37.2	35.4
E _b [GeV]	8.0	3.5
u _c [keV]	54.7	8.40

QC1 cryostat and Belle yoke

SR from QCSL in the QCSL & QC1L bores

SR from QCSR in the QCSR & QC1R bores

Synchrotron light from QCS

Issue

- Synchrotron lights from QCSL and QCSR may hit QC1 magnets.
- Necessary estimation
 - Path of the synchrotron lights from particles on the nominal orbits (-> Ohuchi)
 - Effects of COD
 - Effects of beam size
 - Consider 3 σ beam size

Effects of COD

Sources of COD

Drifts of orbits

- Heating of IR magnets
- Other sources

Artificial bumps

- Machine study
- Other tunings
 - Heating of IR components

iBump tuning

- Mainly offset at IP
- Method of COD estimation
 - IP horizontal angle -> check of KBLog
 - IP horizontal offset -> check of KBLog

COD estimation

• Angle at IP

- ± 0.5mrad(KBLog) -> ± 0.41mrad (KEKB) (β_x* = 59cm) (with a correction based on SAD calculations on effects of QCS magnets)
- □ ± 0.82 mrad (SuperKEKB) (β_x^* = 15cm) (normalized by a square root of a gamma factor at IP)
- Offset at IP
 - □ ± 1mm(KEKB) -> ± 0.73mm (KEKB)
 - ± 0.37mm (SuperKEKB)

Effects of beam size

Methods of estimation

 \square Consider 3 σ_x

Effects of phase space

 A particle distribution in the phase space at the source point transformed with a transfer matrix of a drift space gives a distribution of synchrotron light.

 \square Effects of dynamic- β and dynamic-emittance

Summary (without dynamic effects)

Source point	QCSRE(IP side) HER	QCSRE(Arc side) HER	QCSLE(IP side) LER	QCSLE(Arc side) LER
$\epsilon_{x}[nm]$		2	4	
Distance from a source point [m]	3.20	2.87	2.12	1.79
Δx[mm] COD	4.0	5.6	2.9	6.0
$\Delta x[mm]$ 3 σ_x	4.5	6.0	3.3	6.0
Δx[mm] Total	8.5	11.6	6.2	12.0

Dynamic β and emittance

Large effects in the horizontal direction

- □ H tune is very close to the half-integer.
- Beta function at IP shrinks.
- Emittance becomes large.
- KEKB case
 - \Box Calculation by using SAD.
- SuperKEKB case
 - □ The above calculation for KEKB is applicable.
 - Both of β_x^* / β_{x0}^* and $\varepsilon_x / \varepsilon_{x0}$ are functions of the horizontal tune and ξ_{x0} .
 - With $\xi_{x0}=0.1$, β_x^* is around 1/5 of a nominal value and ε_x is twice as large as a nominal value.

Dynamic β and emittance [cont'd]

- Effects on SOR from QCS magnets.
 - Calculation is on the way.
 - The angular divergence get very large with the dynamic effects at QCS magnets.
 - □ The beam size at QCS magnets also get large.
 - The horizontal size of synchrotron light at QC1 magnets gets (more than) three times larger than that without the dynamic effects.

Dynamic β and emittance[cont'd]Calculation by using SAD in the KEKB case

Machine Parameters of the KEKB (May 13 2003)

	LER	HER	
Horizontal Emittance	18	24	nm
Beam current	1377	1050	mA
Number of bunches	12		
Bunch current	1.07	0.818	mA
Bunch spacing	2	.4	m
Bunch trains	1	I	
Total RF volatage Vc	8.0	13.0	MV
Synchrotron tune $ oldsymbol{ u}_{s} $	-0.0249	-0.0207	
Betatron tune v_x/v_y	45.507/43.546	44.512/41.580	
beta's at IP β_x^* / β_y^*	59/0.58	58/0.7	cm
Estimated vertical beam size at IP $\sigma_y^{igstyle}$	2.2	2.2	μ m
beam-beam parameters हू. / हु,	0.096/0.069	0.065/0.052	
Beam lifetime	127@1377	256@ 1050	min.@mA
Luminosity (Belle Csl)	10.567		10 ³³ /cm ² /sec
Luminosity records per day / 7days/ month	579/3876/12760		/pb

LER IR Lattice

LER IR with local chromaticity correction ($\beta_x/\beta_y = 15/0.3$ cm)

Dynamic Aperture Simulations (LER)

Status of IR Lattice Design

LER

- □ Chromaticity correction is difficult for particles with finite transverse and longitudinal amplitudes with v_x =.510.
- □ The dynamic aperture has shrunk when $\beta_x^* = 30 > 15$ cm.
- If we want to realize β_x^* of 15cm, we need to be improved even without multiples of IR quads, by reoptimizating both linear optics and sextupole strengths.

□ We changed design value of β_x *=15cm -> 20cm very recently.

□ Optics at crab cavities have not yet been optimized.

HER

Estimations and optimization of dynamic aperture will start, after we find a resonable solution for the LER lattice.