Cooldown status on 15th August 2008
Cooldown of sectors

- From RT to 80K precooling with LN2. 1200 tons of LN2 (64 trucks of 20 tons). Three weeks for the first sector.

- From 80K to 4.5K. Cooldown with refrigerator. Three weeks for the first sector. 4700 tons of material to be cooled.

- From 4.2K to 1.9K. Cold compressors at 15 mbar. Four days for the first sector.
Large helium refrigerator for cooling down to 4.5 K

600 kW precooling to 80 K with LN2 (up to ~5 tons/h)

33 kW @ 50 K to 75 K
23 kW @ 4.6 K to 20 K
41 g/s liquefaction
Cool-down of LHC sector

- **Christmas and water maintenance shut-down**
- **Short in connection cryostats and repairs**
- **Open Days**

Sectors
- < 2 K
- +2 < 5 K

Cooling sectors + Cryo tuning + Powering activities
7 out of 8 sectors fully commissioned for 5 TeV operation and 1 sector (3-4) commissioned up to 4 TeV.
Beam on turns 1 and 2
Few 100 turns

LHC Longitudinal Bunch Profile Beam2

Courtesy R. Bailey
Fast BCT
Dump dilution sweep
No RF, debunching in \(\sim 25\times10 \) turns, i.e. roughly 25 mS
First attempt at capture, at exactly the wrong injection phase…
Capture with corrected injection phasing
Capture with optimum injection phasing, correct reference
Integer tunes
Tune measurements

LHC - B2 - Fill #830
2008-09-10 21:38:52
RAW & FFT: 256 turns @ 1.0 Hz
no excitation
Q1 = 0.3092 Qx = 0.3089
Q2 = 0.2333 Qy = 0.2337
|C| = 0.0106
Q'x = ???
Q'y = ???

Comments:
no comment

Courtesy R. Bailey
Fractional tune spectrum H & V (Beam2) – closest Q approach ~ 0.06 due to coupling
Corrected closed orbit on B2.
Energy offset of ~ -0.9 permill due to the capture frequency.
H wire scan
Kick response compared with theoretical optics
Beam 1 H dispersion on first turn
Injection to beam dump
Incident during powering

The magnet circuits in the seven other sectors of the LHC had been fully commissioned to their nominal currents (corresponding to beam energy of 5.5 TeV) before the first beam injection on 10 September 2008. For the main dipole circuit, this meant a powering in stages up to a current of 9.3 kA. The dipole circuit of sector 3-4, the last one to be commissioned, had only been powered to 7 kA prior to 10 September 2008. After the successful injection and circulation of the first beams at 0.45 TeV, commissioning of this sector up to the 5.5 TeV beam energy level was resumed as planned and according to established procedures.

On 19 September 2008 morning, the current was being ramped up to 9.3 kA in the main dipole circuit at the nominal rate of 10 A/s, when at a value of 8.7 kA, a resistive zone developed in the electrical bus in the region between dipole C24 and quadrupole Q24. The first evidence was the appearance of a voltage of 300 mV detected in the circuit above the noise level: the time was 11:18:36 CEST. No resistive voltage appeared on the dipoles of the circuit, individually equipped with quench detectors with a detection sensitivity of 100 mV each, so that the quench of any magnet can be excluded as initial event. After 0.39 s, the resistive voltage had grown to 1 V and the power converter, unable to maintain the current ramp, tripped off at 0.46 s (slow discharge mode). The current started to decrease in the circuit and at 0.86 s, the energy discharge switch opened, inserting dump resistors in the circuit to produce a fast power abort. In this sequence of events, the quench detection, power converter and energy discharge systems behaved as expected.
Sequence of events and consequences

Within the first second, an electrical arc developed and punctured the helium enclosure, leading to release of helium into the insulation vacuum of the cryostat.

The spring-loaded relief discs on the vacuum enclosure opened when the pressure exceeded atmospheric, thus relieving the helium to the tunnel. They were however unable to contain the pressure rise below the nominal 0.15 MPa absolute in the vacuum enclosures of subsector 23-25, thus resulting in large pressure forces acting on the vacuum barriers separating neighboring subsectors, which most probably damaged them. These forces displaced dipoles in the subsectors affected from their cold internal supports, and knocked the Short Straight Section cryostats housing the quadrupoles and vacuum barriers from their external support jacks at positions Q23, Q27 and Q31, in some locations breaking their anchors in the concrete floor of the tunnel. The displacement of the Short Straight Section cryostats also damaged the “jumper” connections to the cryogenic distribution line, but without rupture of the transverse vacuum barriers equipping these jumper connections, so that the insulation vacuum in the cryogenic line did not degrade.
Inspection and diagnostics

The number of magnets to be repaired is at maximum of 5 quadrupoles (in Short Straight Sections) and 24 dipoles, but it is likely that more will have to be removed from the tunnel for cleaning and exchange of multilayer insulation. The exact numbers will be known once the ongoing inspections are completed. Spare magnets and spare components appear to be available in adequate types and sufficient quantities for allowing replacement of the damaged ones during the forthcoming shutdown. The extent of contamination to the beam vacuum pipes is not yet fully mapped, but known to be limited; in situ cleaning is being considered to keep to a minimum the number of magnets to be removed. The plan for removing/reinstallation, transport and repair of magnets in sector 3-4 is being established and integrated with the maintenance and consolidation work to be performed during the winter shutdown. The corresponding manpower resources have been secured.
Preliminary recommendations

Recommendations made by the task force aim at two different goals, namely to prevent any other occurrence of this type of initial event, and to mitigate its consequences should it however reproduce accidentally. Possible precursors of the incident in sector 3-4 are being scrutinized in the electrical and calorimetric data recorded on all sectors, in order to spot any other problem of the same nature in the machine. An improvement of the quench detection system is under way, to generate both early warnings and interlocks, and to encompass magnets, bus bars and interconnects. The relief devices on the cryostat vacuum vessels will be increased in discharge capacity and in number, so as to contain a possible pressure rise to below 0.15 MPa absolute even in presence of an electrical arc. The external anchoring of the cryostats at the locations of the vacuum barriers will be reinforced to guarantee mechanical stability. The personnel access rules during powering will also be reexamined, to further exclude human presence not only in the machine tunnel, but also in the neighboring caverns and technical areas underground.