Concepts and R&D for beta beam facilities

Elena Wildner, CERN
on behalf of
the EURISOL Beta Beam Study Group
Outline

- Beta Beam Concepts and Options
- The EURISOL Beta Beam Scenario
- Ion Production
- Loss Management
- Improvements
- Continuation
Beta-beam principle

- **Aim:** production of (anti-)neutrino beams from the beta decay of radio-active ions circulating in a storage ring
 - Similar concept to the neutrino factory, but parent particle is a beta-active isotope instead of a muon.
- **Beta-decay at rest**
 - ν–spectrum well known from electron spectrum
 - Reaction energy Q typically of a few MeV
- **Accelerate parent ion to relativistic γ_{max}**
 - Boosted neutrino energy spectrum: $E_\nu \leq 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \leq 1/\gamma$
- **Pure electron (anti-)neutrino beam!**
- **Two different parent ions for neutrino and anti-neutrino beams**
- **Physics applications of a beta-beam**
 - Primarily neutrino oscillation physics and CP-violation
 - Cross-sections of neutrino-nucleus interaction

Beta Beam Concepts and R&D, 30 Oct 2008,
Elena Wildner
The beta-beam options

- Baselines, L (Distance from production to detector)
 - Short ≤ 300 km (Genuine CP asymmetry measurements)
 - Medium
 - Long ~ 7500 (Matter effects)
 - Magic (most optimal sensitivities for physics reach)
- Neutrino energy and angle (γ boost and Q value)
 - Sets optimal L and flux in detector
- Interacting νμ in detector
 - Merit factor M ~ γ / E_0
- Long Baselines
 - Higher γ or higher ion Q, needs more decays
- The Electron capture beta-beam
- Ion choice limited: life time, Q-value, β⁺ & β⁻, Z/A…
The EURISOL scenario

- Based on CERN boundaries
- Ion choice: 6He and 18Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (6He) or 250 (18Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cerenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory (Frejus)

Achieve an annual neutrino rate of
- 2.9×10^{18} anti-neutrinos from 6He
- 1.1×10^{18} neutrinos from 18Ne

The EURISOL scenario will serve as reference for further studies and developments: Within Euroν we will study 8Li and 8B
EURISOL Beta Beam complex

Low-energy part
- Ion production
- Proton Driver
 - SPL
- Ion production
 - ISOL target & Ion source
- Beam preparation
 - ECR pulsed
- Ion acceleration
 - Linac, 0.4 GeV
- Acceleration to medium energy
 - RCS, 1.5 GeV

High-energy part
- Acceleration
- Acceleration to final energy
 - PS & SPS
- Neutrino source
 - Decay ring
 - \(B \rho = 1500 \text{ Tm} \)
 - \(B = \sim 6 \text{ T} \)
 - \(C = \sim 6900 \text{ m} \)
 - \(L_{ss} = \sim 2500 \text{ m} \)
 - \(^6\text{He}: \gamma = 100\)
 - \(^{18}\text{Ne}: \gamma = 100\)

Existing!!!
- SPS
 - 93 GeV
- PS
 - 8.7 GeV

Detector in the Frejus tunnel

Beta Beam Concepts and R&D, 30 Oct 2008,
Elena Wildner
Options for production

- ISOL method at 1-2 GeV (200 kW)
 - $>1 \times 10^{13}$ 6He per second
 - $<8 \times 10^{11}$ 18Ne per second
 - Studied within EURISOL

- Direct production
 - $>1 \times 10^{13}$ 6He per second
 - 1×10^{13} 18Ne per second
 - Studied at LLN, Soreq, WI and GANIL

- Production ring
 - 10^{14} (?) 8Li
 - $>10^{13}$ (?) 8B
 - Will be studied within EUROν

N.B. Nuclear Physics has limited interest in those elements → Production rates not pushed!

Aimed:
- He 2.9×10^{18} (2.0×10^{13}/s)
- Ne 1.1×10^{18} (2.0×10^{13}/s)

Courtesy M. Lindroos
Converter technology preferred to direct irradiation (heat transfer and efficient cooling allows higher power compared to insulating BeO).

- \(^6\text{He} \) production rate is \(\sim 2 \times 10^{13} \) ions/s (dc) for \(\sim 200 \) kW on target.

Projected values, known x-sections!
Producing 10^{13} 18Ne could be possible with a beam power (at low energy) of 2 MW (or some 130 mA 3He beam on MgO).

To keep the power density similar to LLN (today) the target has to be 60 cm in diameter.

To be studied:
- Extraction efficiency
- Optimum energy
- Cooling of target unit
- High intensity and low energy ion linac
- High intensity ion source

S. Mitrofanov and M. Loislet at CRC, Belgium
Studied 9Be(n,α)6He, 11B(n,α)8Li and 9Be($n,2n$)8Be production.

For a 2 mA, 40 MeV deuteron beam, the upper limit for the 6He production rate via the two stage targets setup is $\sim 6 \cdot 10^{13}$ atoms per second.

T.Y.Hirsh, D.Berkovits, M.Hass
(Soreq, Weizmann I.)
New approaches for ion production

Will be studied in Eurov FP7:
Design of ring
Cooling in ring
Collection device
ECR Source

\[^7\text{Li}(d,p)^8\text{Li} \]
\[^6\text{Li}(^3\text{He},n)^8\text{B} \]
Overview, production

<table>
<thead>
<tr>
<th>Illustration</th>
<th>METHOD</th>
<th>Advantage</th>
<th>Drawback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Production ring</td>
<td>-“Re-use” of driver beam thanks to cooling
-Huge cross sections for compound nucleus</td>
<td>-Challenging gas target design
-Collection device efficiency</td>
</tr>
<tr>
<td></td>
<td>Converter target, with low and high energy driver</td>
<td>Can accept very high intensity driver beam (>1 MW)</td>
<td>Limited to neutron produced isotopes such as 6He and 8Li</td>
</tr>
<tr>
<td>1 GeV protons" /></td>
<td>ISOL with >1 GeV protons</td>
<td>Universal, any non-refractory isotope can be produced at high intensity with good beam quality</td>
<td>Can only accepted up to some 100 kW of driver beam</td>
</tr>
<tr>
<td></td>
<td>Direct production</td>
<td>-Low energy and high intensity driver
-Huge cross sections for compound nucleus</td>
<td>-Challenging very high intensity driver design
-Extraction efficiency</td>
</tr>
</tbody>
</table>

Courtesy M. Lindroos
Work on Radiation Issues

- **Radiation safety**
 - 88% of 18Ne and 75% of 6He ions are lost between source and injection into the Decay Ring
 - Detailed studies on RCS (manageable)
 - PS preliminary results available (heavily activated, 1 s flat bottom)
 - SPS and Decay Ring studies ongoing

- **Safe collimation** of ions during stacking, ongoing
 - ~1 MJ beam energy/cycle injected, equivalent ion number to be removed, ~25 W/m average

- **Magnet protection** (PS and Decay Ring manageable)

- **Dynamic vacuum**, studies ongoing

- Tritium and Sodium production in the **ground water** needs to be studied when site known (Magistris and Silari, 2002)
Radio protection: Stefania Trovati, CERN

1. Injection losses
2. RF capture losses
3. Decay Losses

- Shielding
- Airborne activity (in tunnel and released in environment)
- Residual dose

- All within CERN rules
- 1 day or one week depending on where for access* (20 mins for air)
- Shielding needed (with margin) 4.5 m concrete shield

* “Controlled area”
The coils could support 60 years operation with a EURISOL type beta-beam.
- Momentum collimation: $\sim5 \times 10^{12}$ 6He ions to be collimated per cycle
- Decay: $\sim5 \times 10^{12}$ 6Li ions to be removed per cycle per meter
Longitudinal Merging

Mandatory for success of the $\gamma=100$ beta-beam concept
Lifetime of ions (minutes) is much longer than cycle time (seconds) of a beta-beam complex

1) Injection

Merging: “oldest” particles pushed outside longitudinal acceptance \rightarrow momentum collimation

2) Rotation

3a) Single merge

3b) Repeated merging

Courtesy Steven Hancock, CERN
Decay Ring Stacking: experiment in CERN PS

Ingredients
- h=8 and h=16 systems of PS.
- Phase and voltage variations.

S. Hancock, M. Benedikt and J.-L. Vallet, CERN
Decay Ring Lattice design: A. Chancé and J. Payet, CEA Saclay

Peak Power Deposition in cable along magnet (FLUKA)

- Need to reduce a factor 5 on midplane
 - Liners with cooling
 - Open Midplane magnets
Open Midplane Dipole for Decay Ring

Cos2\(\theta\) design open midplane magnet

Manageable (7 T operational) with Nb - Ti at 1.9 K

Aluminum spacers possible on midplane to retain forces: gives transparency to the decay products

Special cooling and radiation dumps may be needed inside yoke.

J. Bruer, E. Todesco, CERN
The study will focus on production issues for ^{8}Li and ^{8}B

- ^{8}B is highly reactive and has never been produced as an ISOL beam
- Production ring: enhanced direct production
 - Ring lattice design
 - Cooling
 - Collection of the produced ions (UCL, INFN, ANL), release efficiencies and cross sections for the reactions
 - Sources ECR (LPSC, GHMFL)
 - Supersonic Gas injector (PPPL)

Parallel studies

- Multiple Charge State Linacs (P Ostroumov, ANL)
- Intensity limitations
The beta-beam in EURONU DS (II)

- Optimization of the Decay Ring (CERN, CEA, TRIUMF)
 - Lattice design for new ions
 - Open midplane superconducting magnets
 - R&D superconductors, higher field magnets
 - Field quality, beam dynamics
 - Injection process revised (merging, collimation)
- A new PS?
 - Magnet protection system
 - Intensity limitations?
- Overall radiation & radioprotection studies
Summary

- The EURISOL beta-beam conceptual design report will be presented in second half of 2009
 - First coherent study of a beta-beam facility
- Continuation of the work: a beta-beam facility using ^8Li and ^8B
 - Experience from EURISOL
 - First results will come from Eurov DS beta beam WP started 1 Sept. 2008 (4 year study)
Acknowledgements

We acknowledge the support of the European Community Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

Particular thanks to
M. Lindroos,
M. Benedikt,
A. Fabich,
P. Delahaye
for contributions to the material presented.