Development of a mover having one nanometer precision and 4mm moving range

Y. Morita, S. Yamashita ICEPP, University of Tokyo Y. Higashi, M. Masuzawa, R. Sugahara, H. Yamaoka KEK

IWAA'06, SLAC, Sep. 28, 2006

ILC (International Linear Collider)

Next generation large linear accelerator
 The beam size at the interaction region is <u>several nm</u>

Motivation for the mover

The beam size is several nm

1nm precision alignment of components

Purpose of the mover

 Fine tuning for the position of ILC components (1nm precision)

Wide range adjustment (4.5mm)

Specification

Specification

Mass: about 350kg
Material: SUS303
The load limit: about 700kg

Cam mover

This mover is for wide range adjustment

3 motors
X, V and θy directions
Moving range: 4.5mm
Moving precision: 0.1μm

Piezoelectric mover

This mover is for fine tuning

6 piezoelectric transducers X, Y, V and θx, θy, θv directions Moving range: 0.4μm Moving precision: 1nm

Cam mover

Piezoelectric mover

The cross section along the line W

3 piezoelectric transducers for vertical motion3 piezoelectric transducers for horizontal motion

The table moves X, Y, V and θ x, θ y, θ v directions

Cam mover

Calculation of the cam mover motion

 $(x_1 - r \cdot \cos\theta_1 + D)^2 + (y_1 - r \cdot \sin\theta_1 - h)^2 = l^2$ $(x_2-r \cdot \cos\theta_2 - D)^2 + (y_2-r \cdot \sin\theta_2 - h)^2 = l^2$ $(x_2-r \cdot \cos\theta_3 - D - d)^2 + (y_2-r \cdot \sin\theta_3 - h)^2 = l^2$ $(x_2-x_1)^2+(y_2-y_1)^2=4\cdot D^2$

2mm

x2 (mm)

2mr

 $\theta 1=0, \theta 2=\pi-\theta 3$ θ 2 and θ 3 are rotated. $\theta 1 = \theta 3 = 0$ $\theta 2$ is rotated.

Comparison between calculation and measurement

Slope of the table is compared

Solid line: calculation result "+"marks: measurement

 $\theta 1=0, \ \theta 2=\pi-\theta 3$ $\theta 2$ and $\theta 3$ are rotated.

 $\theta 1 = \theta 3 = 0$ $\theta 2$ is rotated.

Piezoelectric mover

Noise of the capacitive sensor

A capacitive sensor is used to examine the property of the piezoelectric transducers

Sampling rate is 2.54kHz
For 10 seconds
Standard deviation is 2.4nm

Capacitive sensor

Piezo motion

0.6

0.4

0.3

02

0.1

-0.1 -2

Movement of table (µm)

Capacitance type displacement sensor

Moving range is about $0.4 \mu m$

Voltage on piezo (V)

10

12

14

16

piezoA ch2 mesurement

A piezoelectric transducer has a hysteresis

Piezo resolution and response speed

Resolution 1 or 2nm can be expected

Response speed of the piezoelectric transducer is 56µm/sec

Vibration cancellation and natural vibration of the mover

Up to 30Hz vibration cancellation system will be developed

Natural vibration of the mover is 45Hz

Stoppers are installed to shift the natural vibration frequency

stoppers

Vibration of the table (PSD)

Red: on the table Blue: on the floor

Vertical direction

With stoppers

Vertical direction

X direction

Summary

Moving range 4.5mm + 0.4µm
12nm step was clearly observed

1 or 2nm resolution can be expected

Response speed of the piezo is 56µm/sec
Natural frequency of the mover is 65Hz or higher with stoppers

Future prospect

1. Measure again with more sensitive and stable sensors

The response speed of the piezoelectric transducer is high $(56\mu m/sec)$

2. Develop the vibration cancellation system up to about 30Hz (In the region>30Hz, amplitude<1nm) feedback or feedforward Michelson-Morley or Fabry-Perot laser interferometer

The end of the slides

Two stage mover Rough mover stage --> Cam movers Precision mover stage --> Piezo movers

Specification

	<u>Range</u>	Resolution	<u>Speed</u>
Rough movers	±1.5 mm	0.1 μm	> 0.1 mm/sec
Precision movers	±0.2 μ m	1 nm	> 0.5 µm/sec

Need 5 directions (X, Y, Θ_X , Θ_Y , Θ_Z)

Max. weight of load is 2 tons

Size of table (to install QD0) $600 \times \tilde{\times} \tilde{\times} H$

According to ANSYS calculation, rough mover stage is weak! --> Stopper is installed

	w/o stoppers	With stoppers
Primary mode	45.1 Hz	187.6 Hz
Secondary mod	le 65.5	304.5
Third	148.6	635.5

				/	
			ANEXC		
Total system>	entration and a second bygenia the second	ATAX	7111513	第1次	84.500Hz
				第2次	120.27 Hz
				第3次	248.69Hz
				第4次	302.45 Hz
				第5次	412.62Hz