LHC WITH LONG RANGE COMPENSATION

Ulrich Dorda

SLAC, LARP Mini-Workshop on Beam-Beam Compensation 2007
Outline

1 MODELL etc
2 NOMINAL LHC
3 PACMAN
4 UPGRADE
BBTrack: weak-strong tracking code
Linear Transfer matrices between nonlinear elements
Stability defined by Liapunov criterion (300,000 turns)

Tunes (tune diffusion) with help of sussix (incorporated in BBTrack)
IP1 & IP5 only
Position: 104m from IP (reserved), defined by equal β functions (or ratio corresponding to the average beam-beam encounter).

- Required wire - current: 81Am
- Average beam-beam separation: $9.5\sigma \rightarrow$ enough for the compensation to work and for the wire to be in the shade of the collimators.
- $\beta_{wire} \approx 1800 \rightarrow$ enough to place a wire with finite extensions.
NOMINAL LHC II

Uncompensated

- Q_x range: 0.290 to 0.330
- Q_y range: 0.300 to 0.325
- Color scale from 1 to 10

Graph shows the compensated and uncompensated regions in the Q_x-Q_y plane.
NOMINAL LHC II

Uncompensated

Wire-compensated
Uncompensated

\[
DA = 5.4\sigma
\]

The color indicates the tune diffusion.
Uncompensated

$DA = 5.4\sigma$

Wire-compensated

$DA = 7.2\sigma$

The color indicates the tune diffusion. Lower amplitude particles are also “stabilized”.
The color indicates the DA.
It works for all Phaseadvances (overall tune constant).
Color = Tune diffusion
DC CURRENT: PACMAN vs. NOMINAL BUNCH

![Graph showing DC current comparison between PACMAN and nominal bunch]

Ulrich Dorda

LHC WITH LONG RANGE COMPENSATION

03. July 2007
3 Alterantives are studied

<table>
<thead>
<tr>
<th>variable</th>
<th>nominal N</th>
<th>low β</th>
<th>Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_\star [m]</td>
<td>0.55</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>particles/bunch [10^{11}]</td>
<td>1.5</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>#LRBBBs</td>
<td>15</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>wire position [m]</td>
<td>104</td>
<td>136</td>
<td>170</td>
</tr>
<tr>
<td>β_{wire} [m]</td>
<td>1780</td>
<td>3299</td>
<td>2272</td>
</tr>
</tbody>
</table>

![Graph showing data distribution](image-url)
UPGRADE I - INCREASE N

Uncompensated

Wire-compensated

$DA = 4.33$

$DA = 6.33$
Uncompensated

$DA = 5.16$

Wire-compensated

$DA = 7.1$
UPGRADE III - COMPACT

Uncompensated

Wire-compensated

$DA = 4$

$DA = 5.2$
CONCLUSIONS

- Wire compensation works
- Wire compensation should become part of the 'official' roadmap phase 1 upgrade
- Low β-max optics is the better one.