COSMOLOGY NOW

We are living through a revolution in our understanding of the Universe on the largest scales

For the first time in history, we have a complete picture of the Universe
WHAT IS THE UNIVERSE MADE OF?

• Remarkable agreement

 Dark Matter: 23% ± 4%
 Dark Energy: 73% ± 4%
 [Baryons: 4% ± 0.4%
 Neutrinos: ~0.5%]

• Remarkable precision (~10%)

• Remarkable results
In 200 B.C., Eratosthenes measured the size of the Earth.

- Remarkable precision (~10%)
- Remarkable result
- But just the first step in centuries of exploration
OUTSTANDING QUESTIONS

• Dark Matter: What is it? How is it distributed?

• Dark Energy: What is it? Why not $\Omega_\Lambda \sim 10^{120}$? Why not $\Omega_\Lambda = 0$? Does it evolve?

• Baryons: Why not $\Omega_B \approx 0$?

• UHE Cosmic Rays: What are they? Where do they come from?

... What tools do we need to address these?
ALCPG COSMOLOGY SUBGROUP

• Goals (Brau, Oreglia):
 – Identify cosmological questions most likely to be addressed by the ILC
 – Determine the role cosmology plays in highlighting specific scenarios for new physics at the ILC
 – Identify what insights the ILC can provide beyond those gained with other experiments and observatories

• Editors: Marco Battaglia, Jonathan Feng*, Norman Graf, Michael Peskin, Mark Trodden*
 *co-conveners

• 30-50 contributors, international participation
 Preliminary results presented here
G: Cosmological Connections

Conveners:
- Wim deBoer: wim.de.boer -- AT -- cern.ch
- Nobuchika Okada: okada@post.kek.jp
- Mark Trodden: trodden -- AT -- physics.syr.edu

<table>
<thead>
<tr>
<th>Track</th>
<th>Date</th>
<th>Time</th>
<th>Presenter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track 3</td>
<td>Sat 19 March</td>
<td>14:00 - 14:25</td>
<td>Howard Baer (Florida State University)</td>
<td>Neutralino dark matter and the ILC</td>
</tr>
<tr>
<td>Track 3</td>
<td>Sat 19 March</td>
<td>14:25 - 14:50</td>
<td>Wim de Boer (CERN and Karlsruhe)</td>
<td>Dark Matter interpretation of EGRET excess of diffuse gamma rays</td>
</tr>
<tr>
<td>Track 3</td>
<td>Sat 19 March</td>
<td>14:50 - 15:10</td>
<td>Yann Mambrini (DESY)</td>
<td>Astroparticle and Collider Physics as complementary sources for the study of string motivated supergravity models</td>
</tr>
<tr>
<td>Track 3</td>
<td>Sat 19 March</td>
<td>15:10 - 15:30</td>
<td>Elbun Senaha (KEK)</td>
<td>Electroweak baryogenesis and the triple Higgs boson coupling</td>
</tr>
<tr>
<td>Track 7</td>
<td>Mon 21 March</td>
<td>09:00 - 09:25</td>
<td>Frank Steffen (DESY)</td>
<td>Signatures of Axinos and Gravitinos at the ILC</td>
</tr>
<tr>
<td>Track 7</td>
<td>Mon 21 March</td>
<td>09:25 - 09:50</td>
<td>Maxim Perelstein (Cornell)</td>
<td>A Model-Independent Signature for WIMPs at the ILC</td>
</tr>
<tr>
<td>Track 7</td>
<td>Mon 21 March</td>
<td>09:25 - 09:50</td>
<td>Shufang Su (Arizona)</td>
<td>Guaranteed Rates for Dark Matter Production at Colliders</td>
</tr>
<tr>
<td>Track 7</td>
<td>Mon 21 March</td>
<td>09:50 - 10:10</td>
<td>Andreas Birkedal (University of Florida)</td>
<td>Pinning down dark matter at a linear collider</td>
</tr>
<tr>
<td>Track 8</td>
<td>Mon 21 March</td>
<td>11:00 - 11:25</td>
<td>Michael Peskin (SLAC)</td>
<td>Dark Matter studies at the ILC</td>
</tr>
<tr>
<td>Track 8</td>
<td>Mon 21 March</td>
<td>11:25 - 11:50</td>
<td>Marco Battaglia (Berkeley)</td>
<td>Dark Matter in the Bulk and Funnel Regions and Extracting the Dark Matter Density from ILC Data</td>
</tr>
<tr>
<td>Track 8</td>
<td>Mon 21 March</td>
<td>11:50 - 12:10</td>
<td>James Alexander (Cornell)</td>
<td>Focus Point Region</td>
</tr>
<tr>
<td>Track 8</td>
<td>Mon 21 March</td>
<td>12:10 - 12:30</td>
<td>Bhaskar Dutta (Regina)</td>
<td>Co-annihilation Region</td>
</tr>
</tbody>
</table>
DARK MATTER

• Requirements: cold, non-baryonic, gravitationally interacting

• Candidates: primodial black holes, axions, warm gravitinos, neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, superWIMPs, self-interacting particles, self-annihilating particles, fuzzy dark matter,…

• Masses and interaction strengths span many, many orders of magnitude
THERMAL RELICS

(1) Initially, DM is in thermal equilibrium:
$$\chi\chi \leftrightarrow \bar{f}f$$

(2) Universe cools:
$$N = N_{EQ} \sim e^{-m/T}$$

(3) χs “freeze out”:
$$N \sim \text{const}$$

$$\Omega_{DM} \sim 0.1 \left(\frac{\sigma_{\text{weak}}}{\sigma_A}\right)$$ – just right for new weak scale particles!
STABILITY

• This assumes the new weak-scale particle is stable

• Problems (p decay, extra particles, large EW corrections)

 Discrete symmetry

 Stability

• In many theories, dark matter is easier to explain than no dark matter
EXAMPLES

• Supersymmetry
 – Superpartners
 – R-parity
 – Neutralino χ with significant Ω_{DM}

• Universal Extra Dimensions
 – Kaluza-Klein partners
 – KK-parity
 – Lightest KK particle with significant Ω_{DM}

• Branes
 – Brane fluctuations
 – Brane-parity
 – Branons with significant Ω_{DM}
The Approach:

- Choose a concrete example: neutralinos
- Choose a simple model framework that encompasses many qualitatively different behaviors: mSUGRA
- Relax model-dependent assumptions and determine parameters
- Identify cosmological, astroparticle implications
Neutralino DM in mSUGRA

Cosmology excludes much of parameter space (Ω_χ too big)

Cosmology focuses attention on particular regions (Ω_χ just right)

Choose 4 representative points for detailed study

Baer et al., ISAJET Gondolo et al., DARKSUSY Belanger et al., MICROMEGA
BULK REGION LCC1 (SPS1a)

$m_0, M_{1/2}, A_0, \tan\beta = 100, 250, -100, 10 \ [\mu>0, m_{3/2}>m_{\text{LSP}}]$

- Correct relic density obtained if χ annihilate efficiently through light sfermions:

- Motivates SUSY with light χ, \tilde{l}

Allanach et al. (2002)
PRECISION MASSES

• Kinematic endpoints, threshold scans:
 – variable beam energy
 – e^- beam polarization
 – e^-e^- option

- Must also verify insensitivity to all other parameters

Weiglein, Martyn et al. (2004)

Feng, Peskin (2001)
Freitas, Manteuffel, Zerwas (2003)
BULK RESULTS

- Scan over ~20 most relevant parameters
- Weight each point by Gaussian distribution for each observable
- ~50K scan points

(Preliminary) result: \(\Delta \Omega_\chi / \Omega_\chi = 2.2\% \) (\(\Delta \Omega_\chi h^2 = 0.0026\))
RELIC DENSITY DETERMINATIONS

Parts per mille agreement for $\Omega_\chi \rightarrow$ discovery of dark matter
FOCUS POINT REGION LCC2

\[m_0, M_{1/2}, A_0, \tan\beta = 3280, 300, 0, 10 \ [\mu > 0, m_{3/2} > m_{\text{LSP}}] \]

- Correct relic density obtained if \(\chi \) is mixed, has significant Higgsino component to enhance

Feng, Matchev, Wilczek (2000)

- Motivates SUSY with light neutralinos, charginos

\[M_C = \begin{pmatrix} M_2 & \sqrt{2m_W \cos\beta} \\ \sqrt{2m_W \sin\beta} & \mu \end{pmatrix} \]
FOCUS POINT RESULTS

- Ω_χ sensitive to Higgsino mixing, chargino-neutralino degeneracy

Alexander, Birkedal, Ecklund, Matchev et al. (2005)

(Preliminary) result: $\Delta \Omega_\chi / \Omega_\chi = 2.4\%$ ($\Delta \Omega_\chi h^2 = 0.0029$)
RELIC DENSITY DETERMINATIONS

Parts per mille agreement for $\Omega_\chi \rightarrow$ discovery of dark matter
CO-ANNIHILATION REGION LCC3

\[m_0, M_{1/2}, A_0, \tan\beta = 210, 360, 0, 40 \ [\mu > 0, m_{3/2} > m_{\text{LSP}}] \]

- If other superpartners are nearly degenerate with the \(\chi \) LSP, they can help it annihilate

\[
\begin{align*}
\chi & \rightarrow \tau + \chi \\
\tilde{\tau} & \rightarrow \tau + \gamma
\end{align*}
\]

Griest, Seckel (1986)

- Requires similar \(e^{-m/T} \) for \(\chi \) and \(\tilde{\tau} \), so (roughly)
 \[\Delta m < T \sim m_\chi/25 \]

- Motivates SUSY with \(\tilde{\tau} \rightarrow \tau + \chi \) with \(\Delta m \sim \text{few GeV} \)
CO-ANNIHILATION RESULTS

Dutta, Kamon; Nauenberg et al.; Battaglia (2005)

(Preliminary) result: $\Delta \Omega_\chi / \Omega_\chi = 7.0\%$ ($\Delta \Omega_\chi h^2 = 0.0084$)
RELIC DENSITY DETERMINATIONS

% level agreement for $\Omega_\chi \rightarrow$ discovery of dark matter
IMPLICATIONS FOR ASTROPARTICLE PHYSICS

Correct relic density \rightarrow Efficient annihilation then
\rightarrow Efficient scattering now
\rightarrow Efficient annihilation now
Direct Detection

DAMA Signal and Others’ Exclusion Contours

CDMS (2004)

Gaitskell (2001)
ILC IMPLICATIONS

LCC2 \rightarrow $m < 1$ GeV, $\Delta \sigma/\sigma < 10\%$

Comparison tells us about local dark matter density and velocity profiles

Baer, Balazs, Belyaev, O’Farrill (2003)
INDIRECT DETECTION

Dark Matter Madlibs!

Dark matter annihilates in ________________ to ________, which are detected by ________________ .

particles an experiment
Dark Matter annihilates in **center of the Sun** to a place **neutrinos**, which are detected by **AMANDA, IceCube**.

Some particles an experiment

- Comparison with colliders constrains dark matter density in the Sun, capture rates

AMANDA in the Antarctic Ice
Dark Matter annihilates in **the galactic center** to a place **photons**, which are detected by **GLAST, HESS, ...**. Some particles

Comparison with colliders constrains DM density at the center of the galaxy
Dark Matter annihilates in the halo to a place
positrons, which are detected by AMS on the ISS.

- Comparison with colliders constrains dark matter density profiles in the halo

ASTROPHYSICS VIEWPOINT:
ILC ELIMINATES PARTICLE PHYSICS UNCERTAINTIES,
ALLOWS ONE TO DO REAL ASTROPHYSICS
ALTERNATIVE DARK MATTER

- All of these signals rely on DM having electroweak interactions. Is this required?
- No – the only required DM interactions are gravitational (much weaker than electroweak).
- But the relic density argument strongly prefers weak interactions.

Is there an exception to this rule?
SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

- Consider SUSY again: Gravitons \rightarrow gravitinos \tilde{G}
- What if the \tilde{G} is the lightest superpartner?

 A month passes...then all WIMPs decay to gravitinos – a completely natural scenario with long decay times

Gravitinos naturally inherit the right density, but they interact only gravitationally – they are “superWIMPs”
WORST CASE SCENARIO?

Looks bad – dark matter couplings suppressed by 10^{-16}

But, cosmology \rightarrow decaying WIMPs are sleptons: heavy, charged, live ~ a month – can be trapped, then moved to a quiet environment to observe decays.

How many can be trapped?

Feng, Smith (2004)
Large Hadron Collider

If squarks, gluinos light, many sleptons, but most are fast: O(1)% are caught in 10 kton trap
International Linear Collider

\[m_{\tilde{\tau}_R} = 219.3 \text{ GeV} \quad \text{\{NLSP only\}} \]

Can tune beam energy to produce slow sleptons:
75% are caught in 10 kton trap

Shufang Su, LCWS05
IMPLICATIONS FROM SLEPTON DECAYS

\[\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_\tilde{\ell}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_\tilde{\ell}^2} \right]^4 \]

- Measurement of \(\Gamma \) and \(E_f \to m_{\tilde{G}} \) and \(M_* \)
 - Probes gravity in a particle physics experiment!
 - Measurement of \(G_{\text{Newton}} \) on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - BBN, CMB in the lab
 - Determines \(\Omega_{\tilde{G}} \): SuperWIMP contribution to dark matter
 - Determines \(F \): supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant
DARK ENERGY

- Quantum mechanics:
 \[\frac{1}{2} \hbar \omega, \quad \omega^2 = k^2 + m^2 \]

- Quantum field theory:
 \[\int^E d^3 k \left(\frac{1}{2} \hbar \omega \right) \sim E^4, \]
 where \(E \) is the energy scale where the theory breaks down

- All fields contribute to \(\Lambda \). We expect
 \[
 (M_{\text{Planck}})^4 \sim 10^{120} \rho_\Lambda \\
 (M_{\text{GUT}})^4 \sim 10^{108} \rho_\Lambda \\
 (M_{\text{SUSY}})^4 \sim 10^{90} \rho_\Lambda \\
 (M_{\text{weak}})^4 \sim 10^{60} \rho_\Lambda
 \]
ONE APPROACH

• Small numbers ↔ broken symmetry

\[\rho_\Lambda \sim M_{Pl}^4 \]

A miracle occurs here

\[\rho_\Lambda = 0 \]

\[\rho_\Lambda \sim m_\nu^4, \quad (M_W^2/M_{Pl})^4, \ldots \]
ANOTHER APPROACH

\[\rho_\Lambda \sim M_{Pl}^4 \]

Many, densely spaced vacua (string landscape, many universes, etc.)

\[-1 < \Omega_\Lambda < 100 \]

Weinberg (1989)
• Two very different approaches. There are others, but none is compelling.

• Ways forward:
 1) Discover a fundamental scalar particle (Higgs would be nice)
 2) $(M_{\text{weak}})^4 \sim 10^{60} \rho_\Lambda$: map out the EW potential
 3) $(M_{\text{SUSY}})^4 \sim 10^{90} \rho_\Lambda$: understand SUSY breaking (see above)
 4) $(M_{\text{GUT}})^4 \sim 10^{108} \rho_\Lambda$: extrapolate to GUT scale
 5) $(M_{\text{Planck}})^4 \sim 10^{120} \rho_\Lambda$: ...

• ILC will be an essential tool for at least 2, 3, and 4.
BARYOGENESIS

• Requires
 – B violation
 – CP violation
 – Departure from thermal equilibrium

• All possible at the electroweak scale with new physics

• For SUSY, requires precise determination of Higgs and top squark parameters, and CP violating phases
• ILC will quickly establish whether EW Baryogenesis is possible

• CP violation: Bartl et al., Zerwas et al., Barger et al., and others

• LCC5: Graf, Strube et al.
CONCLUSIONS

• Cosmology now provides sharp problems that are among the most outstanding in basic science today.

• They require new particle physics, cannot be solved by cosmological tools alone.

• In many cases, the ILC provides an essential tool for discovering the answers.
AN EQUALLY EXCITING AGE OF DISCOVERY AHEAD