The Renormalization Scale Problem

$$\rho = C_0 \alpha_s(Q) \left[ 1 + C_1(Q) \frac{\alpha_s(Q)}{\pi} + C_2(Q) \frac{\alpha_s^2(Q)}{\pi^2} + \cdots \right].$$

How does one set scale Q?

#### with M. Binger

Renormalization Scale Setting

LoopFest 2006

Ι

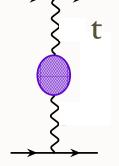
#### Electron-Electron Scattering in QED

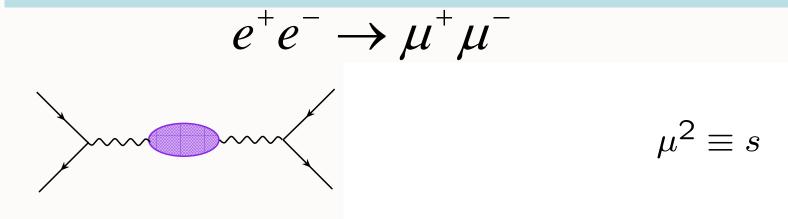
$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

- No renormalization scale ambiguity!
- Two separate physical scales.
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one must sum an infinite number of graphs -- but then recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds

Renormalization Scale Setting

LoopFest 2006





Scale of  $\alpha_{QED}(\mu^2)$  unique!

#### The QED Effective Charge

- Complex
- Analytic through mass thresholds
- Distinguishes between timelike and spacelike momenta

Analyticity essential: See C. Berger and L. Dixon talks

Renormalization Scale Setting

3

LoopFest 2006

#### *The Renormalization Scale Problem* M. Binger, sjb

- No renormalization scale ambiguity in QED
- Gell Mann-Low-Dyson QED Coupling defined from physical observable;
- Sums all Vacuum Polarization Contributions
- Renormalization Scale in QED scheme: Identical to Photon Virtuality
- Analytic: Reproduces lepton-pair thresholds
- Examples: muonic atoms, g-2, Lamb Shift
- Time-like and Space-like QED Coupling related by analyticity
- Uses Dressed Skeleton Expansion

Renormalization Scale Setting

# Lessons from QED : Summary

- Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity
- Multiple "renormalization" scales appear
- The scales are unambiguous since they are physical kinematic invariants
- Optimal improvement of perturbation theory

Renormalization Scale Setting

LoopFest 2006

# Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics. Lepage, Mackenzie, sjb Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

Renormalization Scale Setting

LoopFest 2006

#### **BLM Scale Setting**

Use  $n_f$  dependence at NLO to identify  $A_{VP}$ 

by

$$\rho = C_0 \alpha_{\overline{\text{MS}}}(Q^*) \left[ 1 + \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} C_1^* + \cdots \right],$$

where

Conformal Coefficient

 $Q^* = Q \exp(3A_{VP})$ ,  $C_1^* = \frac{33}{2}A_{VP} + B$ .

The term  $33A_{VP}/2$  in  $C_1^*$  serves to remove that part of the constant *B* which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by  $\beta_0 = 11 - \frac{2}{3}n_f$ .

Use skeleton expansion Gardi, Rathsman, sjb

Renormalization Scale Setting

LoopFest 2006

$$\begin{split} R_{e^+e^-}(Q^2) &\equiv 3\sum_{\text{flavors}} e_q^2 \left[ 1 + \frac{\alpha_R(Q)}{\pi} \right] \,. \\ R_{e^+e^-}(Q^2) &\equiv 3\sum_q e_q^2 \left[ 1 + \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2}{\pi^2} (1.98 - 0.115 n_f) \\ &\quad + \cdots \right] \\ &\quad \rightarrow 3\sum_q e_q^2 \left[ 1 + \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} + \frac{\alpha_{\overline{\text{MS}}}^2(Q^*)}{\pi^2} 0.08 \\ &\quad + \cdots \right] \,, \\ Q^* &= 0.710Q. \text{ Notice that } \alpha_R(Q) \\ \text{differs from } \alpha_{\overline{\text{MS}}}(Q^*) \text{ by only } 0.08 \alpha_{\overline{\text{MS}}}/\pi, \text{ so that} \\ \alpha_R(Q) \text{ and } \alpha_{\overline{\text{MS}}}(0.71Q) \text{ are effectively interchangeable (for any value of } n_f). \end{split}$$

Renormalization Scale Setting

LoopFest 2006

Deep-inelastic scattering. The moments of the nonsinglet structure function  $F_2(x,Q^2)$  obey the evolution equation

$$Q^{2} \frac{d}{dQ^{2}} \ln M_{n}(Q^{2})$$

$$= -\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\mathrm{MS}}}(Q) \left[ 1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{4\pi} \frac{2\beta_{0}\beta_{n} + \gamma_{n}^{(1)}}{\gamma_{n}^{(0)}} + \cdots \right]$$

$$\to -\frac{\gamma_{n}^{(0)}}{8\pi} \alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*}) \left[ 1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*})}{\pi} C_{n} + \cdots \right],$$

where, for example,

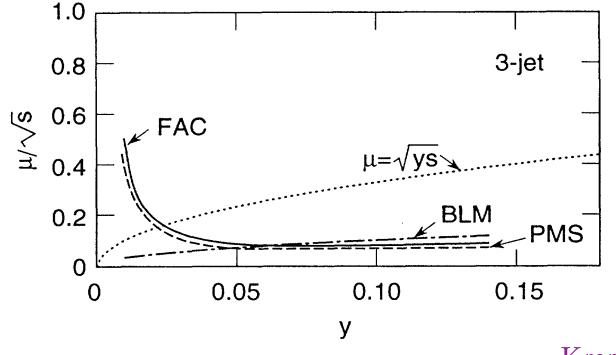
$$Q_2^* = 0.48Q, \quad C_2 = 0.27,$$
  
 $Q_{10}^* = 0.21Q, \quad C_{10} = 1.1.$ 

For *n* very large, the effective scale here becomes  $Q_n^* \sim Q/\sqrt{n}$ 

#### BLM scales for DIS moments

Renormalization Scale Setting

Stan Brodsky, SLAC



#### Three-Jet Rate

Kramer & Lampe

The scale  $\mu/\sqrt{s}$  according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and  $\sqrt{y}$  (dotted) procedures for the three-jet rate in  $e^+e^-$  annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of  $\mu$  as the jet invariant mass  $\mathcal{M} < \sqrt{(ys)}$  decreases.

#### Rathsman

#### Other Jet Observables:

Renormalization Scale Setting

LoopFest 2006

$$V(Q^{2}) = -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q)}{Q^{2}} \left[ 1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{\pi} (\frac{5}{12}\beta_{0} - 2) + \cdots \right]$$
$$\rightarrow -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{Q^{2}} \left[ 1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{\pi} 2 + \cdots \right],$$

where  $Q^* = e^{-5/6}$ ,  $Q \cong 0.43Q$ . This result shows that the effective scale of the  $\overline{\text{MS}}$  scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential  $V(Q^2)$  gives a particularly intuitive scheme for defining the QCD coupling constant

$$V(Q^2) \equiv -\frac{4\pi C_F \alpha_v(Q)}{Q^2}$$

Application of BLM to Multi-Scale Threshold Production Hoang, Kuhn, Tuebner, SJB

Phys.Lett.B359:355-361,1995

Renormalization Scale Setting

LoopFest 2006

# Features of BLM Scale Setting

- All terms associated with nonzero beta function summed into running coupling
- Conformal series preserved
- BLM Scale Q\* sets the number of active flavors
- Correct analytic dependence in the quark mass
- Only  $n_f$  dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q\* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit!

Renormalization Scale Setting

LoopFest 2006

 $\lim N_C \to 0$  at fixed  $\alpha = C_F \alpha_s, n_\ell = n_F/C_F$ 

#### $QCD \rightarrow Abelian Gauge Theory$

Analytic Feature of SU(Nc) Gauge Theory

Huet, sjb

Renormalization Scale Setting

LoopFest 2006

13

# Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

Renormalization Scale Setting

LoopFest 2006

$$\begin{split} \frac{\alpha_R(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[ \left(\frac{41}{8} - \frac{11}{3}\zeta_3\right) C_A - \frac{1}{8}C_F + \left(-\frac{11}{12} + \frac{2}{3}\zeta_3\right) f \right] \\ &\quad + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108}\zeta_3 - \frac{55}{18}\zeta_5 - \frac{121}{432}\pi^2\right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12}\zeta_3 + \frac{55}{3}\zeta_5\right) C_A C_F - \frac{23}{32}C_F^2 \right. \\ &\quad + \left[ \left(-\frac{970}{81} + \frac{224}{27}\zeta_3 + \frac{5}{9}\zeta_5 + \frac{11}{108}\pi^2\right) C_A + \left(-\frac{29}{96} + \frac{19}{6}\zeta_3 - \frac{10}{3}\zeta_5\right) C_F \right] f \\ &\quad + \left(\frac{151}{162} - \frac{19}{27}\zeta_3 - \frac{1}{108}\pi^2\right) f^2 + \left(\frac{11}{144} - \frac{1}{6}\zeta_3\right) \frac{d^{abc}d^{abc}}{C_F d(R)} \frac{\left(\sum_f Q_f\right)^2}{\sum_f Q_f^2} \right\}. \end{split}$$

$$\begin{split} \frac{\alpha_{g_1}(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[\frac{23}{12}C_A - \frac{7}{8}C_F - \frac{1}{3}f\right] \\ &+ \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18}\zeta_5\right)C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9}\zeta_3\right)C_A C_F + \frac{1}{32}C_F^2 \right. \\ &+ \left[ \left(-\frac{3535}{1296} - \frac{1}{2}\zeta_3 + \frac{5}{9}\zeta_5\right)C_A + \left(\frac{133}{864} + \frac{5}{18}\zeta_3\right)C_F \right]f + \frac{115}{648}f^2 \right\}. \end{split}$$

#### Apply BLM, Eliminate MSbar, Find Amazing Simplification

Renormalization Scale Setting

LoopFest 2006

$$\int_0^1 dx \left[ g_1^{ep}(x,Q^2) - g_1^{en}(x,Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[ 1 - \frac{\alpha_{g_1}(Q)}{\pi} \right]$$

$$\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi}\right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi}\right)^3$$

Geometric Series in Conformal QCD

#### Generalized Crewther Relation

add Light-by-Light

Lu, Kataev, Gabadadze, Sjb

Renormalization Scale Setting

LoopFest 2006

Generalized Crewther Relation

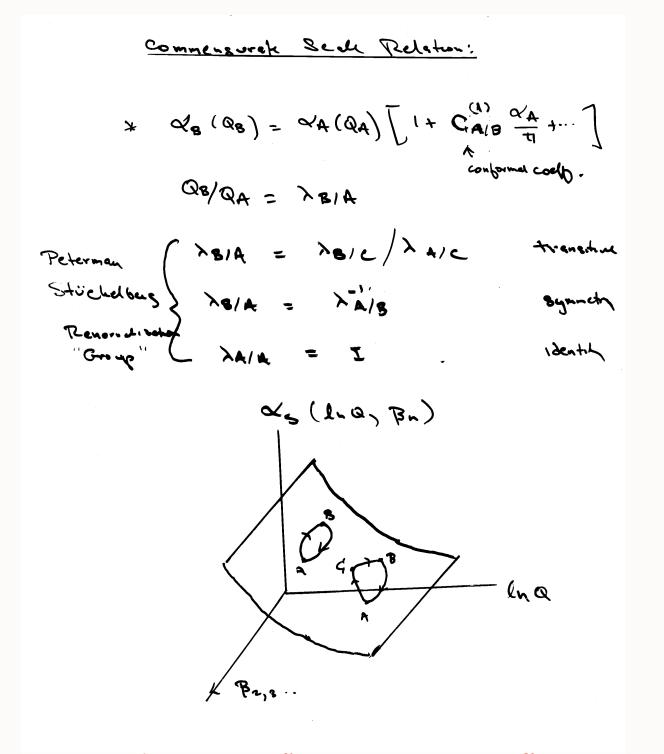
$$[1 + \frac{\alpha_R(s^*)}{\pi}][1 - \frac{\alpha_{g_1}(q^2)}{\pi}] = 1$$

$$\sqrt{s^*} \simeq 0.52Q$$

# Conformal relation true to all orders in perturbation theory

Renormalization Scale Setting

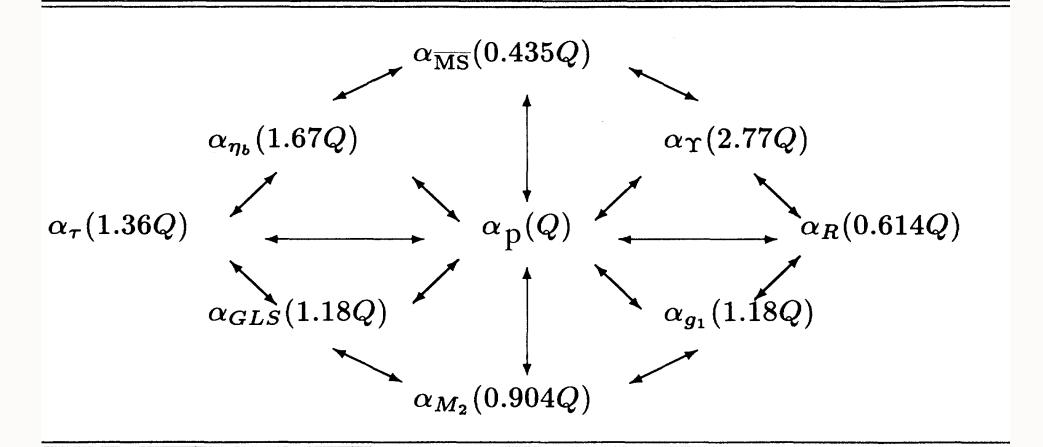
LoopFest 2006



18

LoopFest 2006

#### Leading Order Commensurate Scales



Translate between schemes at LO

Renormalization Scale Setting

LoopFest 2006

# **Unification in Physical Schemes**

"PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION" M.B. and Stanley J. Brodsky. **Phys.Rev.D69:095007,2004** 

$$\alpha_{i}(Q) = \frac{\alpha_{i}(Q_{0})}{1 + \hat{\Pi}_{i}(Q) - \hat{\Pi}_{i}(Q_{0})}$$
 i=1,2,3  
$$\hat{\Pi}_{i}(Q) = \frac{\alpha_{i}}{4\pi} \sum_{p} \beta_{i}^{(p)} \left( L_{s(p)}(Q^{2} / m_{p}^{2}) + \cdots \right)$$

"log-like" function:

 $L_{s(p)} \approx \log(e^{\eta_p} + Q^2 / m_p^2)$ 

$$\eta_p = 8/3, 5/3, 40/21$$
  
For spin s(p) = 0, ½, and 1

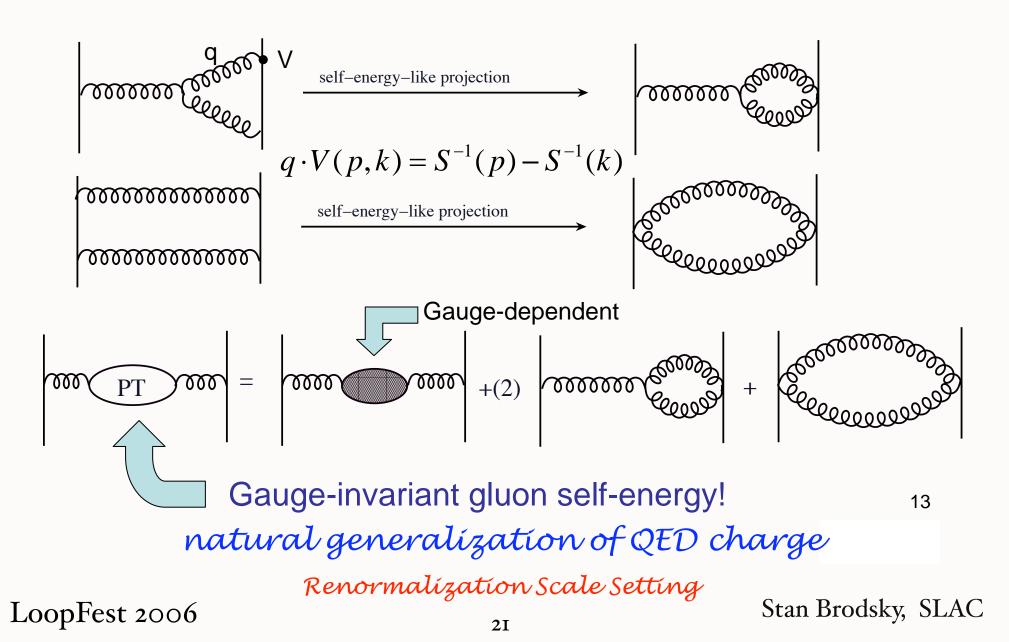
Elegant and natural formalism for all threshold effects

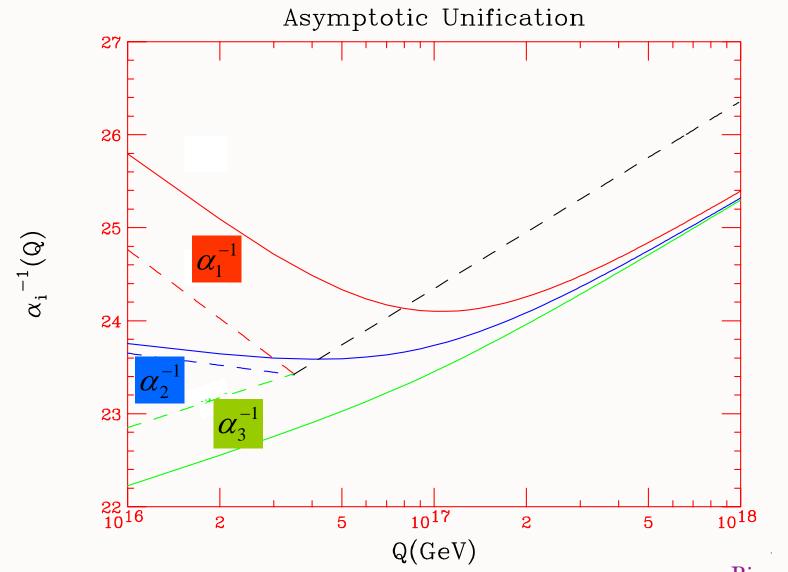
#### Renormalization Scale Setting

Stan Brodsky, SLAC

# **The Pinch Technique**

(Cornwall, Papavassiliou)







#### Renormalization Scale Setting

LoopFest 2006

### **Analyticity and Mass Thresholds**

MS does not have automatic decoupling of heavy particles



Must define a set of schemes in each desert region and match  $\alpha_s^{(f)}(M_o) = \alpha_s^{(f+1)}(M_o)$ 

- The coupling has discontinuous derivative at the matching point
- At higher orders the coupling itself becomes discontinuous!
- Does not distinguish between spacelike and timelike momenta

"AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME" S. Brodsky, M. Gill, M. Melles, J. Rathsman. **Phys.Rev.D58:116006,1998** 

Renormalization Scale Setting

LoopFest 2006

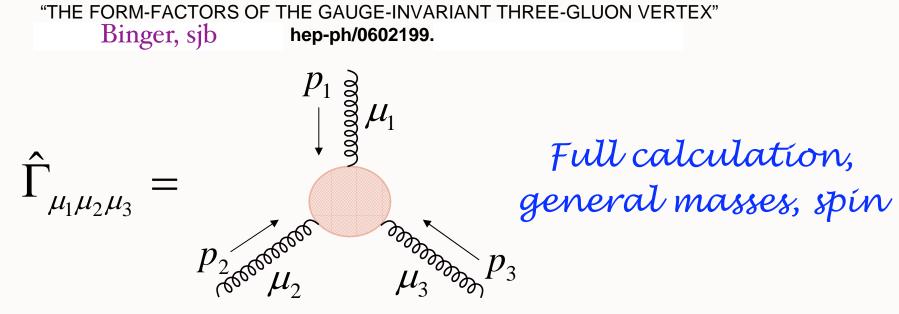
# **Unification in Physical Schemes**

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher "unification" scale than usual

Renormalization Scale Setting

LoopFest 2006

### BLM and Non-Abelian QCD General Structure of the Three-Gluon Vertex



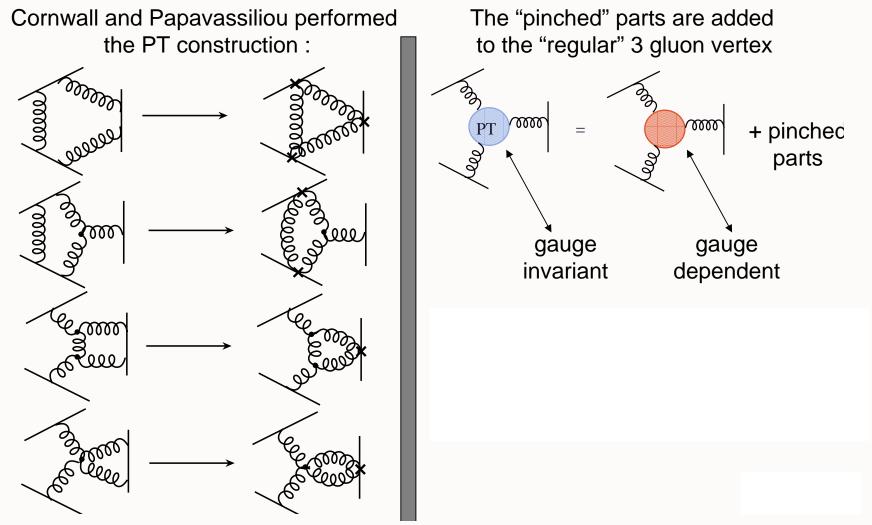
3 index tensor  $\hat{\Gamma}_{\mu_1\mu_2\mu_3}$  built out of  $g_{\mu\nu}$  and  $p_1, p_2, p_3$ with  $p_1 + p_2 + p_3 = 0$ 



Renormalization Scale Setting

LoopFest 2006

### The Gauge Invariant Three Gluon Vertex



Renormalization Scale Setting

LoopFest 2006

26

## Form Factors : Supersymmetric Relations (Massless)

....but certain linear sums are simple :

$$\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G \longrightarrow 0$$
 for 7 of the 13 FF's (in physical basis)

 $\Box$  Simple N=1 SUSY contribution in d=4

$$F_G + 4F_Q + (10 - d)F_S = 0$$
 For all FF's !!

$$\longrightarrow$$
 N=4 SUSY in d=4 gives 0

These are off-shell generalizations of relations found in SUSY scattering amplitudes by Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435)

Renormalization Scale Setting

LoopFest 2006

### Summary of Supersymmetric Relations

| Massless                                       | Massive                                                |
|------------------------------------------------|--------------------------------------------------------|
| $F_G + 4F_Q + (10 - d)F_S = 0$                 | $F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0$                 |
| $\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G$ | $\Sigma_{MQG}(F) \equiv \frac{d-1}{2} F_{MQ} + F_{MG}$ |
| = simple                                       | = simple                                               |

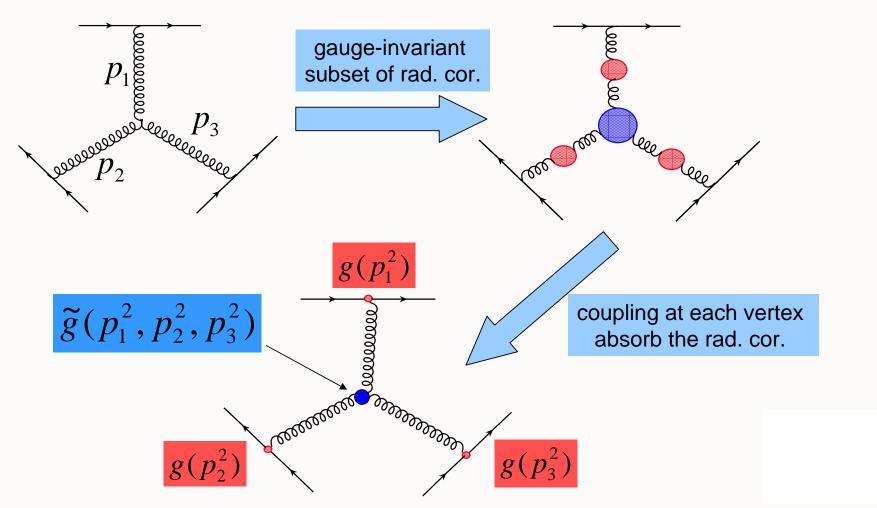
Renormalization Scale Setting

Stan Brodsky, SLAC

LoopFest 2006

28

### Multi-scale Renormalization of the Three-Gluon Vertex



Renormalization Scale Setting

Stan Brodsky, SLAC

## **3 Scale Effective Charge**

$$\widetilde{\alpha}(a,b,c) \equiv \frac{\widetilde{g}^2(a,b,c)}{4\pi}$$

(First suggested by H.J. Lu)

$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\alpha_{bare}} + \frac{1}{4\pi} \beta_0 \left( L(a,b,c) - \frac{1}{\varepsilon} + \cdots \right)$$
$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 \left[ L(a,b,c) - L(a_0,b_0,c_0) \right]$$

L(a,b,c) = 3-scale "log-like" function L(a,a,a) = log(a)

Renormalization Scale Setting

LoopFest 2006

#### **3 Scale Effective Scale**

$$L(a,b,c) \equiv \log(Q_{eff}^2(a,b,c)) + i \operatorname{Im} L(a,b,c)$$

Governs strength of the three-gluon vertex

$$\frac{1}{\tilde{\alpha}(a,b,c)} = \frac{1}{\tilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 [L(a,b,c) - L(a_0,b_0,c_0)]$$
$$\hat{\Gamma}_{\mu_1\mu_2\mu_3} \propto \sqrt{\tilde{\alpha}(a,b,c)}$$

Generalization of BLM Scale to 3-Gluon Vertex

Renormalization Scale Setting

LoopFest 2006

#### **Properties of the Effective Scale**

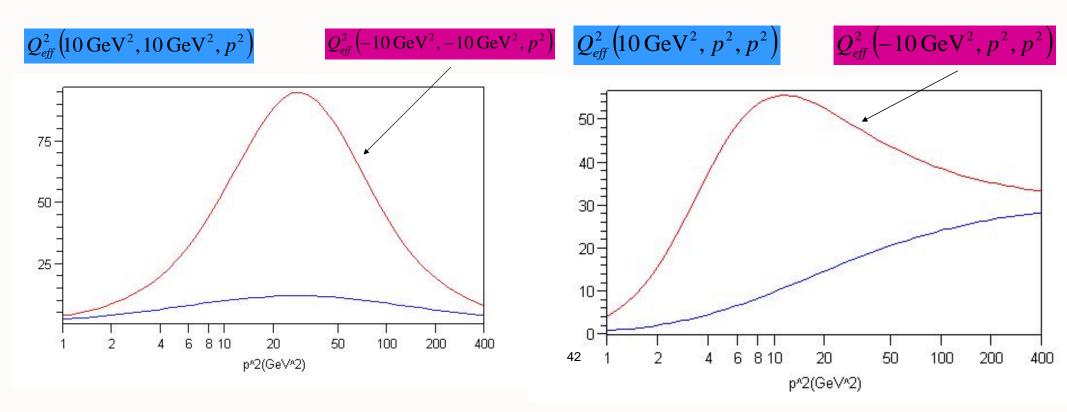
$$\begin{aligned} Q_{eff}^{2}(a,b,c) &= Q_{eff}^{2}(-a,-b,-c) \\ Q_{eff}^{2}(\lambda a,\lambda b,\lambda c) &= |\lambda| Q_{eff}^{2}(a,b,c) \\ Q_{eff}^{2}(a,a,a) &= |a| \\ Q_{eff}^{2}(a,-a,-a) &\approx 5.54 |a| \\ Q_{eff}^{2}(a,a,c) &\approx 3.08 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,-a,c) &\approx 22.8 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,b,c) &\approx 22.8 \frac{|bc|}{|a|} \quad \text{for } |a| >> |b|, |c| \end{aligned}$$

Surprising dependence on Invariants

Renormalization Scale Setting

Stan Brodsky, SLAC

# The Effective Scale

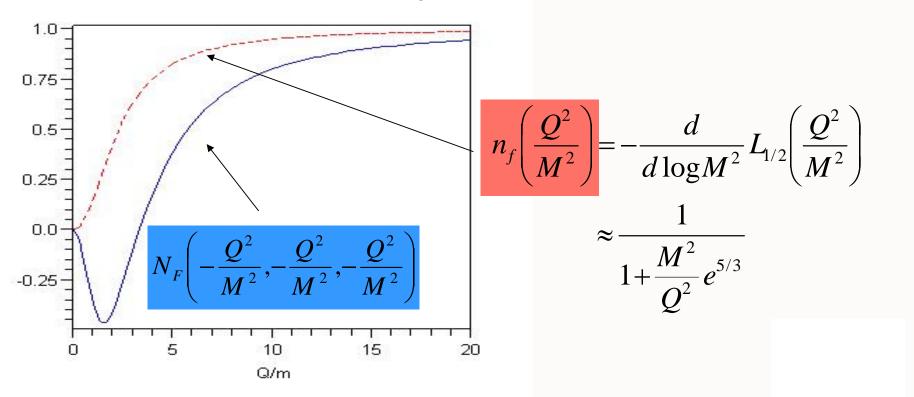


Renormalization Scale Setting

Stan Brodsky, SLAC

#### **Effective Number of Flavors**

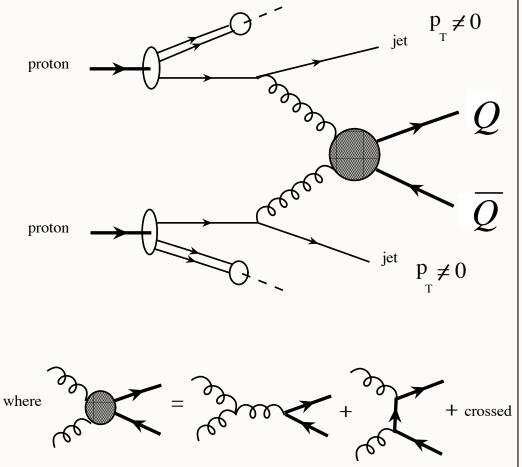
$$N_{F}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) = -\frac{d}{d\log M^{2}}L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right)$$



Renormalization Scale Setting

Stan Brodsky, SLAC

# **Heavy Quark Hadro-production**



- Preliminary calculation using (massless) results for tree level form factor
- Very low effective scale

much larger cross section than  $\overline{MS}$  with scale  $\mu_R = M_{Q\overline{Q}}$  or  $M_Q$ 

• Future : repeat analysis using the full massdependent results and include all form factors

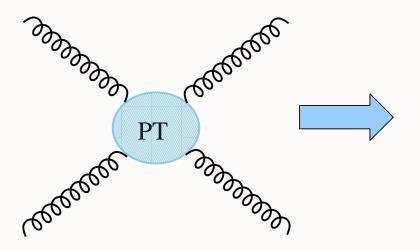
Expect that this approach accounts for most of the one-loop corrections

Renormalization Scale Setting

LoopFest 2006

#### **Future Directions**

#### Gauge-invariant four gluon vertex



 $L_4(p_1, p_2, p_3, p_4)$  $Q_{4\,eff}^2(p_1, p_2, p_3, p_4)$ 

Hundreds of form factors!

Renormalization Scale Setting

LoopFest 2006

36

# **Summary and Future**

 Multi-scale analytic renormalization based on physical, gauge-invariant Green's functions

 Optimal improvement of perturbation theory with no scale-ambiguity since physical kinematic invariants are the arguments of the (multi-scale) couplings

Renormalization Scale Setting

LoopFest 2006

#### Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- Conventional procedure has no scientific basis.
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds

Renormalization Scale Setting

LoopFest 2006

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

Renormalization Scale Setting

LoopFest 2006

# Factorization scale

 $\mu_{\rm factorization} \neq \mu_{\rm renormalization}$ 

- Arbitrary separation of soft and hard physics
- Dependence on factorization scale not associated with beta function - present even in conformal theory
- Keep factorization scale separate from renormalization scale  $\frac{d\mathcal{O}}{d\mathcal{O}} = 0$
- Residual dependence when one works in fixed order in perturbation theory.

Renormalization Scale Setting

Stan Brodsky, SLAC

# Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit (N<sub>C</sub> =0)
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

Renormalization Scale Setting

LoopFest 2006