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Overview.

♦ The two-loop crossed vertex diagram gives rise to a six-dimensional
integral, where the outer integration is over the simplex z1+z2+z3 =

1 and the inner integration over the hyper-rectangle [−1, +1]3. The
factor 1/D2

3 in the integrand has a non-integrable singularity interior
to the integration domain and a singularity on the boundary.

♦ The integral can be evaluated by iterated numerical integration.
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♦ We also study a sector transformation which rewrites the original
problem as a sum of three five-dimensional integrals (two of which
are equal through symmetry) and eliminates the boundary singular-
ity.

♦ The interior singularity is handled by replacing D3 in the denom-
inator by D3 − iε and treating the integral in the limit as ε → 0. This
is accomplished numerically via an extrapolation.

♦ The integration and extrapolation are performed automatically.

♦ We verify the results with data published in the literature.
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1 Introduction

♦ The scalar non-planar two-loop vertex integral, according to Kuri-
hara et al. (2005) [10], is

IF =
1

8

∫ ∞

0

dz1 dz2 dz3 δ(1−Σ3
j=1zj) z1z2z3

∫ 1

−1

dy1 dy2 dy3
1

(D3 − iε)2
,

where D3 is a quadratic in ~y = (y1, y2, y3)
τ , and D3 depends on the

masses mj, 1 ≤ j ≤ 6 and on s` = p2
`, ` = 1, 2, 3.

♦ The problem is scalar in view of the constant numerator in the in-
tegrand. If the numerator is a polynomial, the problem is non-scalar.

♦ The integral is interpreted in the limit as the parameter in the
denominator, ε → 0.

Nonplanar vertex two-loop diagram
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Specifically,
D3 = ~yτA~y +~bτ~y + c, (1)

where

A =
1

4





−z2

1
(z2 + z3) z1z2z3(−s1 − s2 + s3)/2 z1z2z3(−s1 + s2 − s3)/2

z1z2z3(−s1 − s2 + s3)/2 − z2

2
(z3 + z1)s2 z1z2z3(s1 − s2 − s3)/2

z1z2z3(−s1 + s2 − s3)/2 z1z2z3(s1 − s2 − s3)/2 − z2

3
(z1 + z2)s3



 ,

~b =
1

2
U





z1(m
2
3 − m2

4)

z2(m
2
5 − m2

6)

z3(m
2
2 − m2

1)



 ,

c =
1

4
U(z1s1+z2s2+z3s3−2(m2

3+m2
4)z1−2(m2

5+m2
6)z2−2(m2

1+m2
2)z3)

and
U = z1z2 + z2z3 + z3z1.

♦ The outer integral (in z1, z2, z3) of 1 is taken over the unit simplex,
1 − Σ3

j=1zj = 0.

♦ The inner integral is over the three-dimensional hyper-rectangle
−1 ≤ yj ≤ 1, 1 ≤ j ≤ 3.

♦ Note that D3 = 0 at z1 = z2 = z3 = 0.
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2 Transformation

♦ We apply a transformation which was used to handle infrared di-
vergent loop integrals by Binoth et al. [3].

♦ This casts the integral IF in the form

IF = I1F + I2F + I3F,

where F = F (~z) represents the inner integral, and the integrals in
the sum are taken over sectors of the first octant in three-space, i.e.,

I1 =

∫ ∞

0

dz1

∫ z1

0

dz2

∫ z1

0

dz3 F (~z),

I2 =

∫ ∞

0

dz2

∫ z2

0

dz1

∫ z2

0

dz3 F (~z),

I3 =

∫ ∞

0

dz3

∫ z3

0

dz1

∫ z3

0

dz2 F (~z).

♦ I1 is transformed according to

z1

z2 = t1z1

z3 = t2z1
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This yields I1 in the form

I1 =
1

8

∫ ∞

0

dz1

∫ 1

0

dt1

∫ 1

0

dt2 t1t2 δ(1−z1(1+t1+t2)) z5
1

∫ 1

−1

d~y
1

(D3 − iε)2

where
D3 = z3

1(A1 + B1 + C1).

♦ Furthermore, writing

z5
1

1

(D3 − iε)2
= R + iI,

we have

R =
1

z1

(A1 + B1 + C1)
2 − ε2/z6

1

((A1 + B1 + C1)2 + ε2/z6
1)

2

and

I =
2ε

z4
1

A1 + B1 + C1

(A1 + B1 + C1)2 + ε2/z6
1)

2
.
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♦ The dimension reduction is achieved by the transformation

z1 =
u1

1 + t1 + t2

so that dz1/z1 = du1/u1 and

δ(1 − z1(1 + t1 + t2)) = δ(1 − u1).

The integration in u1 thus reduces to setting u1 = 1 in the integrand.

♦ The resulting integral for I1 is:

I1 =
1

8

∫ 1

0

dt1

∫ 1

0

dt2

∫ 1

−1

d~y
(A1 + B1 + C1)

2 − ε2(1 + t1 + t2)
6

((A1 + B1 + C1)2 + ε2(1 + t1 + t2)6)2

+
2iε(A1 + B1 + C1)(1 + t1 + t2)

3

((A1 + B1 + C1)2 + ε2(1 + t1 + t2)6)2
.

♦ I2 and I3 are derived in a similar manner.
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3 Numerical Integration

♦ In [6, 7] we used iterated integration together with extrapolation
methods to compute various one-loop (scalar and nonscalar) inte-
grals and a two-loop planar vertex integral.

♦ E.g., the three-dimensional non-scalar box integral in [7] was
evaluated by iterated integration as a 1D×1D×1D integral by apply-
ing a one-dimensional adaptive method in every coordinate direc-
tion.

♦ Iterated integration methods have further been examined theoret-
ically and experimentally in [12, 11].

♦ For the current computation we can apply iterated adaptive nu-
merical integration to the 5D integral as a 2D×1D×1D×1D problem
(after the sector transformation which transforms the outer 3D inte-
gral to 2D). The inner three dimensions need substantial subdivision
in view of the quadratic hypersurface singularity.

♦ An alternative approach is by treating the original problem as a
(1D)6 iterated integral.
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♦ A general outline of the adaptive numerical integration algorithm
(applied for each group of iterated dimensions) is given below.

Evaluate initial region and initialize results
Put initial region on priority queue
while (evaluation limit not reached

and estimated error too large)
Retrieve region from priority queue
Split region
Evaluate new subregions and update results
Insert subregions into priority queue

♦ The user specifies the function f(x), integration limits (for a do-
main D), requested absolute and relative accuracies εa and εr, re-
spectively, and determines a limit on the number of subdivisions.

♦ The (black box) algorithm calculates an integral approximation
Qf ≈ If =

∫

D f(~x) d~x and an absolute error estimate Ef, with
the aim to satisfy a criterion of the form |Qf − If | ≤ Ef ≤

max{εa, εr|If |} within the allowed number of subdivisions, or in-
dicate an error condition if the subdivision limit has been reached.
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♦ The QUADPACK [13] adaptive routine DQAGE was used for the
1D quadrature problems, with a 7 and 15-point Gauss-Kronrod quadra-
ture rule pair on each subinterval.

♦ The multivariate integration was based on DCUHRE [9, 2] and its
cubature rule of polynomial degree 7 for integration over the subre-
gions. A parallel implementation of this method is layered over MPI

in PARINT [1].

4 Extrapolation

♦ Assuming the integral I = I(ε) of (1) has an asymptotic expan-
sion in terms of the form εk log` ε, k ≥ 0, ` ≥ 0 integer, algorithms
such as the ε algorithm [14, 16] are valid for accelerating conver-
gence when supplied with a sequence of I(εj) for a geometric pro-
gression of εj.

♦ Table 1 shows a sample extrapolation table obtained for the crossed
vertex two-loop problem with parameters m1 = m2 = m4 = m5 =

150 GeV, m3 = m6 = 91.17 GeV; s1 = s2 = 1502 GeV2 and
s3/m

2
1 = 5.
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Table 1: Sample extrapolation table

j

32 0.1019E-08
31 0.1096E-08 0.1480E-08
30 0.1160E-08 0.1411E-08 0.1441E-08
29 0.1211E-08 0.1478E-08 0.1469E-08 0.1464E-08
28 0.1254E-08 0.1468E-08 0.1451E-08
27 0.1290E-08 0.1462E-08
26 0.1319E-08

♦ The entries in the leftmost column of the table are approxima-
tions to I(εj) computed by numerical integration of the 5D integral
for requested relative tolerances of 10−3.

♦ It should be noted that it is generally preferable to increase the ac-
curacy requirement toward the inner integrations. A scheme for set-
ting the error toleranced for the iterated integrations is under study [5].

♦ The extrapolation shown here is performed with ε = εj where
ε = 1.2 and j = 32 (−1) 26. The result agrees with the data in [10].
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Table 2: Real Part (in units of 10−9)

Tarasov [15] Ferroglia [8] KEK
(s3/(m ∗ ∗2) (hep (hep Minami

ph/9505277) ph/0311186) Tateya
4.0 0.733120(0.02) 0.7331(1) 0.733120(2)
4.5 0.61644824(0.1) 0.6216(78) 0.61650(2)
5.0 0.5184444(0.3) 0.5203(40) 0.51845(1)
8.0 0.14555(0.7) 0.1455(20) 0.1455223(5)

20.0 -0.2047(0.8) -0.2058(5) -0.20471(4)
100.0 -0.0382(3) -0.0385(1) -0.0382(2)

Table 3: Imaginary Part (in units of 10−9)

Tarasov [15] Ferroglia [8] KEK
(s3/m ∗ ∗2) (hep (hep Minami

ph/9505277) ph/0311186) Tateya
4.5 -0.3349475(1) -0.3402(71) -0.3349(1)
5.0 -0.430997(0.3) -0.4442(93) -0.43100(5)
8.0 -0.5460(0.5) -0.5491(40) -0.54594(1)
20.0 -0.1876(4) -0.1864(4) -0.187578(10)

♦ Table 2 shows results obtained with the (1D)6 approach for pa-
rameters m1 = m2 = m3 = m4 = m5 = m6 = m = 150 GeV; s1 =

s2 = 0 (Real Part). Table 3 lists the corresponding Imaginary Part
data.
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5 Conclusions

♦ The scalar crossed two-loop Feynman diagram gives rise to a six-
dimensional integral. The integration in the outer three dimensions
is over a simplex, while the inner integration is taken over a three-
dimensional hyper-rectangle. The integrand has singularities on the
boundary and within the domain.

♦ The integral can be approximated directly by iterated integration
over the six dimensions.

♦ Alternatively, we can apply a sector transformation which rewrites
the problem as a sum of three (two, through symmetry) five-dimensional
integrals. Apart from the removal of the boundary singularity and the
mapping to a hyper-rectangular domain, the reduction in dimension
is significant for reducing the cost of the subsequent numerical cu-
bature.

13



♦ The transformation can be implemented automatically via sym-
bolic manipulation (cf, [3]). For the subsequent automatic cubature,
the software is supplied with the integrand, domain, requested accu-
racies and limits on the number of subdivision; it returns a result and
estimated error.

♦ As such, this paper is part of an effort to increase the automatiza-
tion in computing Feynman diagrams.
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