Transverse-momentum resummation

Polarization and resummation for slepton-pair hadroproduction

Benjamin Fuks (LPSC Grenoble)

in collaboration with Giuseppe Bozzi and Michael Klasen [Phys. Lett. B609, 339 (2005) and hep-ph/0603074]

> LoopFest V SLAC (California), June 19-21, 2006

< 🗇 🕨 < 🖻 🕨

Introduction	and	Motivations

Transverse-momentum resummation

Outline

- Introduction and Motivations
 - The Minimal Supersymmetric Model
 - Slepton production at hadron colliders
 - Tau slepton identification
 - Importance of transverse-momentum distribution
- 2 Fixed order calculations
 - Leading order
 - Next-to-leading order
 - Fixed order failure
- 3 Transverse-momentum resummation
 - Main features
 - The resummed component
 - The finite component
 - Non-perturbative effects
 - q_T -resummation for slepton-pair production at the LHC

Conclusions

Conclusions

The Minimal Supersymmetric Model

Main features

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.
- One SUSY partner for each SM particle.
- 5 Higgs bosons.
- R-parity conservation.

Advantages

- Gauge couplings unification at Planck scale.
- Possible inclusion of gravity.
- Solution to hierarchy problem.
- Dark matter candidate.
- New CP-violation phases.

Conclusions

The Minimal Supersymmetric Model

Main features

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.
- One SUSY partner for each SM particle.
- 5 Higgs bosons.
- R-parity conservation.

Advantages

- Gauge couplings unification at Planck scale.
- Possible inclusion of gravity.
- Solution to hierarchy problem.
- Dark matter candidate.
- New CP-violation phases.

Fixed order calculations

Transverse-momentum resummation

Conclusions

Why study slepton production ?

- Due to their purely electroweak couplings, sleptons are among the lightest SUSY particles in many SUSY-breaking scenarios.
 [Allanach et al., Eur. Phys. J. C25, 113 (2002)]
- Often directly decays into the lightest SUSY particle (LSP) plus the corresponding standard model partner (lepton or neutrino).
- Clean signal with a highly energetic lepton and missing energy.

A (10) < A (10) </p>

Fixed order calculations

Transverse-momentum resummation

Conclusions

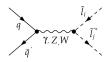
Why study slepton production ?

- Due to their purely electroweak couplings, sleptons are among the lightest SUSY particles in many SUSY-breaking scenarios.
 [Allanach et al., Eur. Phys. J. C25, 113 (2002)]
- Often directly decays into the lightest SUSY particle (LSP) plus the corresponding standard model partner (lepton or neutrino).
- Clean signal with a highly energetic lepton and missing energy.

Fixed order calculations

Transverse-momentum resummation 000000000 Conclusions

Slepton production at hadron colliders



 $q\bar{q} \rightarrow \tilde{l}_i \tilde{l}_j^*$:

- slepton-pair production
- neutral current

 $q \bar{q}'
ightarrow ilde{l}_i ilde{
u}_l^* + ilde{l}_i^* ilde{
u}_l$

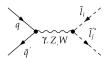
- slepton-sneutrino associated production
- charged current

We focus on tau slepton and sneutrino. Why?

Fixed order calculations

Transverse-momentum resummation 000000000 Conclusions

Slepton production at hadron colliders



 $q\bar{q} \rightarrow \tilde{l}_i \tilde{l}_j^*$:

- slepton-pair production
- neutral current

 $q \bar{q}'
ightarrow ilde{l}_i ilde{
u}_l^* + ilde{l}_i^* ilde{
u}_l$

- slepton-sneutrino associated production
- charged current

We focus on tau slepton and sneutrino. Why?

Third generation slepton and sneutrino properties

 In general SUSY-breaking models, interaction eigenstates are not identical to mass eigenstates

$$\begin{pmatrix} \tilde{l}_1 \\ \tilde{l}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_{\tilde{l}} & \sin \theta_{\tilde{l}} \\ -\sin \theta_{\tilde{l}} & \cos \theta_{\tilde{l}} \end{pmatrix} \begin{pmatrix} \tilde{l}_L \\ \tilde{l}_R \end{pmatrix} ,$$

where

$$\tan 2\theta_{\tilde{l}} = \frac{2 m_l m_{LR}}{m_{LL}^2 - m_{RR}^2}$$

[Haber, Kane, Phys. Rept. 117, 75 (1985)]

- Mixing proportional to corresponding lepton mass ⇒ only important for third generation.
- Third generation SUSY particles are lighter \Rightarrow more easily produced.

(4月) イヨト イヨト

Third generation slepton and sneutrino properties

 In general SUSY-breaking models, interaction eigenstates are not identical to mass eigenstates

$$\begin{pmatrix} \tilde{l}_1 \\ \tilde{l}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_{\tilde{l}} & \sin \theta_{\tilde{l}} \\ -\sin \theta_{\tilde{l}} & \cos \theta_{\tilde{l}} \end{pmatrix} \begin{pmatrix} \tilde{l}_L \\ \tilde{l}_R \end{pmatrix} ,$$

where

$$\tan 2\theta_{\tilde{l}} = \frac{2 m_l m_{LR}}{m_{LL}^2 - m_{RR}^2}$$

[Haber, Kane, Phys. Rept. 117, 75 (1985)]

- Mixing proportional to corresponding lepton mass ⇒ only important for third generation.
- Third generation SUSY particles are lighter \Rightarrow more easily produced.

・ 戸 ト ・ ヨ ト ・ ヨ

Transverse-momentum resummation

Are tau sleptons detectable ?

Tau slepton often decays in one tau lepton plus one neutralino \Rightarrow tau tagging at hadron colliders ?

- Leptonic decays (35%): isolated muons or electrons plus ∉_T ⇒ Limited use (origin of the lepton unknown).
- Hadronic decays (65%): narrow isolated jet with low track multiplicity and invariant mass, plus *φ_τ*.
- Require significant q_T .
- Atlas: [Hinchliffe, Nucl. Phys. Proc. Suppl. 123, 229 (2003)]
- CMS: [Gennai, Nucl. Phys. Proc. Suppl. 123, 244 (2003)]
- CDF: [Anastassov et al., Nucl. Instrum. Meth. A 518, 609 (2004)]
- DØ: [Le Bihan, Nucl. Phys. Proc. Suppl. 144, 333 (2005)]

・ 同 ト ・ ヨ ト ・ ヨ

Are tau sleptons detectable ?

Tau slepton often decays in one tau lepton plus one neutralino \Rightarrow tau tagging at hadron colliders ?

- Leptonic decays (35%): isolated muons or electrons plus ∉_T ⇒ Limited use (origin of the lepton unknown).
- Hadronic decays (65%): narrow isolated jet with low track multiplicity and invariant mass, plus *φ_τ*.
- Require significant q_T .
- Atlas: [Hinchliffe, Nucl. Phys. Proc. Suppl. 123, 229 (2003)]
- CMS: [Gennai, Nucl. Phys. Proc. Suppl. 123, 244 (2003)]
- CDF: [Anastassov et al., Nucl. Instrum. Meth. A 518, 609 (2004)]
- DØ: [Le Bihan, Nucl. Phys. Proc. Suppl. 144, 333 (2005)]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Are tau sleptons detectable ?

Tau slepton often decays in one tau lepton plus one neutralino \Rightarrow tau tagging at hadron colliders ?

- Leptonic decays (35%): isolated muons or electrons plus ∉_T ⇒ Limited use (origin of the lepton unknown).
- Hadronic decays (65%): narrow isolated jet with low track multiplicity and invariant mass, plus *φ_τ*.
- Require significant q_T .
- Atlas: [Hinchliffe, Nucl. Phys. Proc. Suppl. 123, 229 (2003)]
- CMS: [Gennai, Nucl. Phys. Proc. Suppl. 123, 244 (2003)]
- CDF: [Anastassov et al., Nucl. Instrum. Meth. A 518, 609 (2004)]
- DØ: [Le Bihan, Nucl. Phys. Proc. Suppl. 144, 333 (2005)]

▲□ ▶ ▲ □ ▶ ▲ □

Are tau sleptons detectable ?

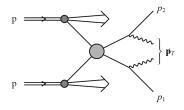
Tau slepton often decays in one tau lepton plus one neutralino \Rightarrow tau tagging at hadron colliders ?

- Leptonic decays (35%): isolated muons or electrons plus ∉_T ⇒ Limited use (origin of the lepton unknown).
- Hadronic decays (65%): narrow isolated jet with low track multiplicity and invariant mass, plus *φ_τ*.
- Require significant q_T .
- Atlas: [Hinchliffe, Nucl. Phys. Proc. Suppl. 123, 229 (2003)]
- CMS: [Gennai, Nucl. Phys. Proc. Suppl. 123, 244 (2003)]
- CDF: [Anastassov et al., Nucl. Instrum. Meth. A 518, 609 (2004)]
- DØ: [Le Bihan, Nucl. Phys. Proc. Suppl. 144, 333 (2005)]

・ 同 ト ・ ヨ ト ・ ヨ ト

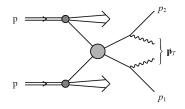
Importance of transverse-momentum distribution

 Slepton-pair production signal made of two SM leptons and large missing energy due to two massive unobserved LSPs.



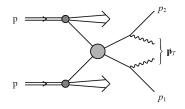
- Longitudinal momentum balance unknown in hadronic collision
 ⇒ importance of a precise knowledge of the q_T-balance.
- Can be used to distinguish SUSY signals from SM background (lepton-pairs from WW or $t\bar{t}$ decays have a different q_T -shape) [Andreev, Bityukov, Krasnikov, Phys. Atom. Nucl. 68, 340 (2005)]

• Slepton-pair production signal made of two SM leptons and large missing energy due to two massive unobserved LSPs.



- Longitudinal momentum balance unknown in hadronic collision
 ⇒ importance of a precise knowledge of the q_T-balance.
- Can be used to distinguish SUSY signals from SM background (lepton-pairs from WW or $t\bar{t}$ decays have a different q_T -shape) [Andreev, Bityukov, Krasnikov, Phys. Atom. Nucl. 68, 340 (2005)]

• Slepton-pair production signal made of two SM leptons and large missing energy due to two massive unobserved LSPs.



- Longitudinal momentum balance unknown in hadronic collision
 ⇒ importance of a precise knowledge of the q_T-balance.
- Can be used to distinguish SUSY signals from SM background (lepton-pairs from WW or $t\bar{t}$ decays have a different q_T -shape) [Andreev, Bityukov, Krasnikov, Phys. Atom. Nucl. **68**, 340 (2005)]

Fixed order calculations

Transverse-momentum resummation

Conclusions

Transverse mass variables

Problem: We have two massive particles carrying missing momentum.

Solution: use of the Cambridge stransverse mass M_{T2}^2

$$m_{T}^{2}(\mathbf{q}_{T}^{\prime}, \mathbf{q}_{T}^{\tilde{\chi}}) = m_{I}^{2} + m_{\tilde{\chi}}^{2} + 2\left(E_{T}^{\prime} E_{T}^{\tilde{\chi}} - \mathbf{q}_{T}^{\prime} \cdot \mathbf{q}_{T}^{\tilde{\chi}}\right)$$
$$m_{T2}^{2} = \min_{\mathfrak{g}_{1} + \mathfrak{g}_{2} = \mathfrak{g}_{T}}\left[\max\left\{m_{T}^{2}(\mathbf{q}_{T}^{\prime -}, \mathbf{q}_{T}^{1}), m_{T}^{2}(\mathbf{q}_{T}^{\prime +}, \mathbf{q}_{T}^{2})\right\}\right]$$
$$m_{T2}^{2} \leq m_{I}^{2}$$

- More realistic: relationship between neutralino and slepton masses. [Lester, Summers, Phys. Lett. B463, 99 (1999)]
- Bonus: can be used for spin determination.

[Barr, JHEP 0602, 042 (2006)]

・ 同 ト ・ ヨ ト ・ ヨ ト

Fixed order calculations

Transverse-momentum resummation

Conclusions

Transverse mass variables

Problem: We have two massive particles carrying missing momentum. Solution: use of the Cambridge *stransverse mass* M_{T2}^2

$$m_{T}^{2}(\mathbf{q}_{T}^{\prime},\mathbf{q}_{T}^{\tilde{\chi}}) = m_{l}^{2} + m_{\tilde{\chi}}^{2} + 2\left(E_{T}^{\prime}E_{T}^{\tilde{\chi}} - \mathbf{q}_{T}^{\prime}\cdot\mathbf{q}_{T}^{\tilde{\chi}}\right)$$
$$m_{T2}^{2} = \min_{\mathbf{q}_{1}+\mathbf{q}_{2}=\mathbf{q}_{T}}\left[\max\left\{m_{T}^{2}(\mathbf{q}_{T}^{\prime-},\mathbf{q}_{T}^{1}),m_{T}^{2}(\mathbf{q}_{T}^{\prime+},\mathbf{q}_{T}^{2})\right\}\right]$$
$$m_{T2}^{2} \leq m_{l}^{2}$$

- More realistic: relationship between neutralino and slepton masses. [Lester, Summers, Phys. Lett. B463, 99 (1999)]
- Bonus: can be used for spin determination.

[Barr, JHEP 0602, 042 (2006)]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction	and	Motivations
000000		

Transverse-momentum resummation

Conclusions

Transverse mass variables

Problem: We have two massive particles carrying missing momentum. Solution: use of the Cambridge *stransverse mass* M_{T2}^2

$$m_{T}^{2}(\mathbf{q}_{T}^{\prime},\mathbf{q}_{T}^{\tilde{\chi}}) = m_{l}^{2} + m_{\tilde{\chi}}^{2} + 2\left(E_{T}^{\prime}E_{T}^{\tilde{\chi}} - \mathbf{q}_{T}^{\prime}\cdot\mathbf{q}_{T}^{\tilde{\chi}}\right)$$
$$m_{T2}^{2} = \min_{\mathbf{q}_{1}+\mathbf{q}_{2}=\mathbf{q}_{T}}\left[\max\left\{m_{T}^{2}(\mathbf{q}_{T}^{\prime-},\mathbf{q}_{T}^{1}),m_{T}^{2}(\mathbf{q}_{T}^{\prime+},\mathbf{q}_{T}^{2})\right\}\right]$$
$$m_{T2}^{2} \leq m_{l}^{2}$$

- Optimistic: $\tilde{\chi}_1^0$ mass is known, slepton mass can be deduced.
- More realistic: relationship between neutralino and slepton masses.

```
[Lester, Summers, Phys. Lett. B463, 99 (1999)]
```

• Bonus: can be used for spin determination.

[Barr, JHEP 0602, 042 (2006)]

/□ ▶ < 글 ▶ < 글

Introduction	and	Motivations
000000		

Transverse-momentum resummation 000000000 Conclusions

Transverse mass variables

Problem: We have two massive particles carrying missing momentum. Solution: use of the Cambridge *stransverse mass* M_{T2}^2

$$m_{T}^{2}(\mathbf{q}_{T}^{\prime},\mathbf{q}_{T}^{\tilde{\chi}}) = m_{l}^{2} + m_{\tilde{\chi}}^{2} + 2\left(E_{T}^{\prime}E_{T}^{\tilde{\chi}} - \mathbf{q}_{T}^{\prime}\cdot\mathbf{q}_{T}^{\tilde{\chi}}\right)$$
$$m_{T2}^{2} = \min_{\mathbf{q}_{1}+\mathbf{q}_{2}=\mathbf{q}_{T}}\left[\max\left\{m_{T}^{2}(\mathbf{q}_{T}^{\prime-},\mathbf{q}_{T}^{1}),m_{T}^{2}(\mathbf{q}_{T}^{\prime+},\mathbf{q}_{T}^{2})\right\}\right]$$
$$m_{T2}^{2} \leq m_{l}^{2}$$

- Optimistic: $\tilde{\chi}_1^0$ mass is known, slepton mass can be deduced.
- More realistic: relationship between neutralino and slepton masses. [Lester, Summers, Phys. Lett. **B463**, 99 (1999)]
- Bonus: can be used for spin determination.

[Barr, JHEP 0602, 042 (2006)]

Introduction	and	Motivations

Transverse-momentum resummation

Outline

- Introduction and Motivations
 - The Minimal Supersymmetric Model
 - Slepton production at hadron colliders
 - Tau slepton identification
 - Importance of transverse-momentum distribution
- 2 Fixed order calculations
 - Leading order
 - Next-to-leading order
 - Fixed order failure
- 3 Transverse-momentum resummation
 - Main features
 - The resummed component
 - The finite component
 - Non-perturbative effects
 - q_T -resummation for slepton-pair production at the LHC

Conclusions

Fixed order calculations

Transverse-momentum resummation

Conclusions

LO cross section and mixing effects for $h_1 h_2 \rightarrow \hat{l}_i \hat{l}_i^*$

$$\begin{split} \frac{\mathrm{d}\hat{\sigma}_{h_a,h_b}}{\mathrm{d}t} &= \frac{4\pi\alpha^2}{3s^2} \Bigg[\frac{u\,t - m_i^2 m_j^2}{s^2} \Bigg] \Bigg[e_q^2 \, e_l^2 (1 - h_a h_b) \, \frac{\delta_{ij}}{2} \\ &+ \frac{e_q \, e_l \, \mathrm{Re}(L_l + R_l) \, [(1 - h_a) \, (1 + h_b) \, L_q + (1 + h_a) \, (1 - h_b) \, R_q] \, \delta_{ij}}{8 \, x_W \, (1 - x_W) \, (1 - m_Z^2/s)} \\ &+ \frac{|L_l + R_l|^2 [(1 - h_a) \, (1 + h_b) \, L_q^2 + (1 + h_a) \, (1 - h_b) \, R_q^2]}{64 \, x_W^2 (1 - x_W)^2 (1 - m_Z^2/s)^2} \Bigg] \,, \end{split}$$

with

$$L_{I} = (2 T_{f}^{3} - 2 e_{f} x_{W}) \frac{S_{i1} S_{j1}^{*}}{S_{j1}^{*}} \text{ and } R_{I} = (-2 e_{f} x_{W}) \frac{S_{i2} S_{j2}^{*}}{S_{j2}^{*}}.$$

- No mixing matrix S for sneutrino $(S_{11}=1, \text{ and all others } S_{ij}=0)$.
- For charged current, all right couplings and electric charges are set to zero, and L_l is set to $\sqrt{2} \cos \theta_W S_{i1}$.

Fixed order calculations

Transverse-momentum resummation

Conclusions

LO cross section and mixing effects for $h_1 h_2 \rightarrow \tilde{l}_i \tilde{l}_i^*$

$$\begin{split} \frac{\mathrm{d}\hat{\sigma}_{h_a,h_b}}{\mathrm{d}t} &= \frac{4\pi\alpha^2}{3s^2} \Bigg[\frac{u\,t - m_i^2 m_j^2}{s^2} \Bigg] \Bigg[e_q^2 \, e_l^2 (1 - h_a h_b) \, \frac{\delta_{ij}}{2} \\ &+ \frac{e_q \, e_l \, \mathrm{Re}(L_l + R_l) \, [(1 - h_a) \, (1 + h_b) \, L_q + (1 + h_a) \, (1 - h_b) \, R_q] \, \delta_{ij}}{8 \, x_W \, (1 - x_W) \, (1 - m_Z^2/s)} \\ &+ \frac{|L_l + R_l|^2 [(1 - h_a) \, (1 + h_b) \, L_q^2 + (1 + h_a) \, (1 - h_b) \, R_q^2]}{64 \, x_W^2 (1 - x_W)^2 (1 - m_Z^2/s)^2} \Bigg] \,, \end{split}$$

with

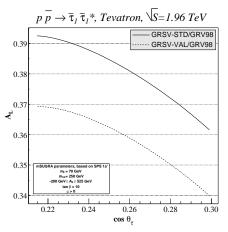
$$L_I = (2 T_f^3 - 2 e_f x_W) \frac{S_{i1} S_{j1}^*}{S_{j1}^*}$$
 and $R_I = (-2 e_f x_W) \frac{S_{i2} S_{j2}^*}{S_{j2}^*}$.

- No mixing matrix S for sneutrino $(S_{11}=1, \text{ and all others } S_{ij}=0)$.
- For charged current, all right couplings and electric charges are set to zero, and L_l is set to $\sqrt{2} \cos \theta_W S_{i1}$.

Fixed order calculations

Transverse-momentum resummation 000000000 Conclusions

Leading order: Single-spin asymmetry and mixing effects



[Bozzi, BF, Klasen, Phys. Lett. B609, 339 (2005)]

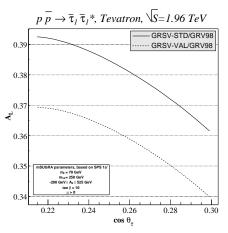
- Sensitive to the mixing angle (7% 8%).
- PDF uncertainties are still large (5% 6%).
 - Lepton-pair production: $A_L \approx -0.09$ \Rightarrow discrimination SUSY/SM.
- Missing: an upgraded Tevatron with one polarized beam. [SPIN collaboration, 10th Topical Workshop on Proton-Antiproton Collider Physics (1995)]

- 4 同 2 4 日 2 4 日 2

Fixed order calculations

Transverse-momentum resummation 000000000

Leading order: Single-spin asymmetry and mixing effects



[Bozzi, BF, Klasen, Phys. Lett. B609, 339 (2005)]

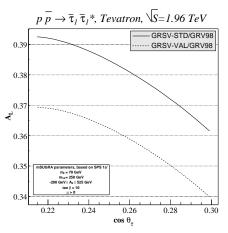
- Sensitive to the mixing angle (7% 8%).
- PDF uncertainties are still large (5% 6%).
- Lepton-pair production: $A_L \approx -0.09$ \Rightarrow discrimination SUSY/SM.
- Missing: an upgraded Tevatron with one polarized beam. [SPIN collaboration, 10th Topical Workshop on Proton-Antiproton Collider Physics (1995)]

・ 同 ト ・ ヨ ト ・ ヨ

Fixed order calculations

Transverse-momentum resummation 000000000

Leading order: Single-spin asymmetry and mixing effects



[Bozzi, BF, Klasen, Phys. Lett. B609, 339 (2005)]

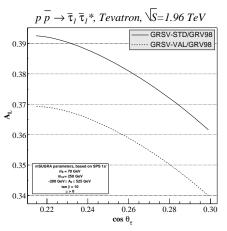
- Sensitive to the mixing angle (7% 8%).
- PDF uncertainties are still large (5% 6%).
- Lepton-pair production: $A_L \approx -0.09$ \Rightarrow discrimination SUSY/SM.
- Missing: an upgraded Tevatron with one polarized beam. [SPIN collaboration, 10th Topical Workshop on Proton-Antiproton Collider Physics (1995)]

・ 同 ト ・ ヨ ト ・ ヨ

Fixed order calculations

Transverse-momentum resummation 000000000

Leading order: Single-spin asymmetry and mixing effects



[Bozzi, BF, Klasen, Phys. Lett. B609, 339 (2005)]

- Sensitive to the mixing angle (7% 8%).
- PDF uncertainties are still large (5% 6%).
- Lepton-pair production: $A_L \approx -0.09$ \Rightarrow discrimination SUSY/SM.
- Missing: an upgraded Tevatron with one polarized beam. [SPIN collaboration, 10th Topical Workshop on Proton-Antiproton Collider Physics (1995)]

□ > < = > <

Fixed order calculations

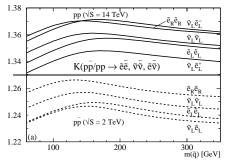
Transverse-momentum resummation

Conclusions

Next-to-leading order K factor

QCD: [Baer, Harris, Reno, Phys. Rev. D 57, 5871 (1998)]

SUSY-QCD: [Beenakker, Klasen, Kramer, Plehn, Spira, Zerwas, Phys. Rev. Lett. 83, 3780 (1999)]



- K factors for slepton-pair in NLO SUSY-QCD not too different from QCD only.
- NLO contributions not negligible (\sim 35% for the LHC and \sim 25% for Tevatron)

Importance of higher order calculations.

・ロト ・同ト ・ヨト ・ヨト

Fixed order calculations

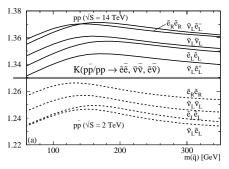
Transverse-momentum resummation

Conclusions

Next-to-leading order K factor

QCD: [Baer, Harris, Reno, Phys. Rev. D 57, 5871 (1998)]

SUSY-QCD: [Beenakker, Klasen, Kramer, Plehn, Spira, Zerwas, Phys. Rev. Lett. 83, 3780 (1999)]



- *K* factors for slepton-pair in NLO SUSY-QCD not too different from QCD only.
- NLO contributions not negligible (\sim 35% for the LHC and \sim 25% for Tevatron)

Importance of higher order calculations.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fixed order calculations

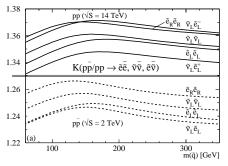
Transverse-momentum resummation

Conclusions

Next-to-leading order K factor

QCD: [Baer, Harris, Reno, Phys. Rev. D 57, 5871 (1998)]

SUSY-QCD: [Beenakker, Klasen, Kramer, Plehn, Spira, Zerwas, Phys. Rev. Lett. 83, 3780 (1999)]



- *K* factors for slepton-pair in NLO SUSY-QCD not too different from QCD only.
- NLO contributions not negligible ($\sim 35\%$ for the LHC and $\sim 25\%$ for Tevatron)

Importance of higher order calculations.

/□ ▶ < 글 ▶ < 글

Fixed order calculations

Transverse-momentum resummation

Conclusions

Fixed order failure at low q_T

q_T -distribution features.

 Soft and collinear radiation enhance the cross section by powers of logarithmic terms ∝ ^{α^s_s}/_{q²_T} log^m ^{Q²}/_{q²_T} (m ≤ 2 n − 1).

• Cross section diverges as $q_T \rightarrow 0$.

- Higher order contributions increase the divergence.
- Fixed order theory convergence definitely spoiled.

Why?

- Real and virtual contributions highly unbalanced.
- Cancellation does not occur order by order.

 \Rightarrow Resummation to all orders needed for reliable perturbative results.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Fixed order calculations

Transverse-momentum resummation

Conclusions

Fixed order failure at low q_T

q_T -distribution features.

- Soft and collinear radiation enhance the cross section by powers of logarithmic terms ∝ aⁿ/_{q²/_T} log^m Q²/_{q²/_T} (m ≤ 2 n − 1).
- Cross section diverges as $q_T \rightarrow 0$.
- Higher order contributions increase the divergence.
- Fixed order theory convergence definitely spoiled.

Why?

- Real and virtual contributions highly unbalanced.
- Cancellation does not occur order by order.

 \Rightarrow Resummation to all orders needed for reliable perturbative results.

(4月) (1日) (日)

Fixed order failure at low q_T

q_T -distribution features.

- Soft and collinear radiation enhance the cross section by powers of logarithmic terms $\propto \frac{\alpha_s^n}{q_\tau^2} \log^m \frac{Q^2}{q_\tau^2}$ $(m \le 2 n 1)$.
- Cross section diverges as $q_T \rightarrow 0$.
- Higher order contributions increase the divergence.
- Fixed order theory convergence definitely spoiled.

Why?

- Real and virtual contributions highly unbalanced.
- Cancellation does not occur order by order.
- \Rightarrow Resummation to all orders needed for reliable perturbative results.

<日本

Fixed order failure at low q_T

q_T -distribution features.

- Soft and collinear radiation enhance the cross section by powers of logarithmic terms $\propto \frac{\alpha_s^n}{q_\tau^2} \log^m \frac{Q^2}{q_\tau^2}$ $(m \le 2 n 1)$.
- Cross section diverges as $q_T \rightarrow 0$.
- Higher order contributions increase the divergence.
- Fixed order theory convergence definitely spoiled.

Why?

- Real and virtual contributions highly unbalanced.
- Cancellation does not occur order by order.

 \Rightarrow Resummation to all orders needed for reliable perturbative results.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fixed order failure at low q_T

q_T -distribution features.

- Soft and collinear radiation enhance the cross section by powers of logarithmic terms $\propto \frac{\alpha_s^n}{q_\tau^2} \log^m \frac{Q^2}{q_\tau^2}$ $(m \le 2 n 1)$.
- Cross section diverges as $q_T \rightarrow 0$.
- Higher order contributions increase the divergence.
- Fixed order theory convergence definitely spoiled.

Why?

- Real and virtual contributions highly unbalanced.
- Cancellation does not occur order by order.
- \Rightarrow Resummation to all orders needed for reliable perturbative results.

A (1) > (1) = (1) (1)

Introduction	and	Motivations

Fixed order calculations

Transverse-momentum resummation

Outline

- Introduction and Motivations
 - The Minimal Supersymmetric Model
 - Slepton production at hadron colliders
 - Tau slepton identification
 - Importance of transverse-momentum distribution
- 2 Fixed order calculations
 - Leading order
 - Next-to-leading order
 - Fixed order failure
- 3 Transverse-momentum resummation
 - Main features
 - The resummed component
 - The finite component
 - Non-perturbative effects
 - q_T -resummation for slepton-pair production at the LHC

Conclusions

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions
Main features			

Reorganization of the cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}} + \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}}$$

• $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_{T}^{2}}\right]_{\mathrm{re}}$

- Contains all the logarithmic terms.
- Contains all the terms proportional to $\delta(q_T)$.
- Resummation to all orders in α_s .
- Exponentiation \Rightarrow finite term.
- $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}}$ is free of these contributions.

 \Rightarrow finite term.

∰ ▶ ∢ ≣ ▶

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions
Main features			

Reorganization of the cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}} + \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}}$$

• $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}$

- Contains all the logarithmic terms.
- Contains all the terms proportional to $\delta(q_T)$.
- Resummation to all orders in α_s .
- Exponentiation \Rightarrow finite term.

•
$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}}$$
 is free of these contributions.
 \Rightarrow finite term.

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions
Main fosturos			

Reorganization of the cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}} + \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}}$$

• $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}$

calures

- Contains all the logarithmic terms.
- Contains all the terms proportional to $\delta(q_T)$.
- Resummation to all orders in α_s .
- Exponentiation \Rightarrow finite term.
- $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\tau}^{2}}\right]_{\mathrm{fin}}$ is free of these contributions.

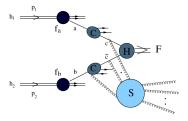
 \Rightarrow finite term.

Fixed order calculations

Transverse-momentum resummation

Ingredients for resummation

Universal resummation formalism developed by Bozzi, Catani, de Florian, Grazzini. [Catani, de Florian, Grazzini, Nucl. Phys. B 596, 299 (2001)]



- process-independent coefficient functions C_{ac} (collinear radiation at very low q_T),
- process-independent Sudakov form factor S_c (soft radiation, and collinear radiation at intermediate q_T),
- process-dependent factor H_c^F (hard contributions at $q_T \sim Q$).

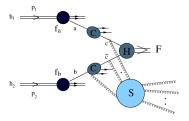
Fixed order calculations

Transverse-momentum resummation

Conclusions

Ingredients for resummation

Universal resummation formalism developed by Bozzi, Catani, de Florian, Grazzini. [Catani, de Florian, Grazzini, Nucl. Phys. B 596, 299 (2001)]



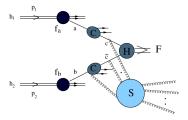
- process-independent coefficient functions C_{ac} (collinear radiation at very low q_T),
- process-independent Sudakov form factor S_c (soft radiation, and collinear radiation at intermediate q_T),
- process-dependent factor H_c^F (hard contributions at $q_T \sim Q$).

Fixed order calculations

Transverse-momentum resummation

Ingredients for resummation

Universal resummation formalism developed by Bozzi, Catani, de Florian, Grazzini. [Catani, de Florian, Grazzini, Nucl. Phys. B 596, 299 (2001)]



- process-independent coefficient functions C_{ac} (collinear radiation at very low q_T),
- process-independent Sudakov form factor S_c (soft radiation, and collinear radiation at intermediate q_T),
- process-dependent factor H_c^F (hard contributions at $q_T \sim Q$).

Fixed order calculations

Transverse-momentum resummation

Conclusions

The resummed component

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} \end{bmatrix}_{\mathrm{res}} (q_T, Q, \mathbf{s}) = \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 f_{a/h_1}(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \\ \times \left[\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}q_T^2} \right]_{\mathrm{res}} (q_T, Q, \hat{\mathbf{s}}; \mu_R, \mu_F)$$

$$\left[\frac{\mathrm{d}^2\sigma_{ab}}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}(q_T,Q,\hat{s};\mu_R,\mu_F) = \frac{Q^2}{\hat{s}}\int\frac{b}{2}\,\mathrm{d}b\,J_0(b\,q_T)\,\mathcal{W}^F_{ab}(b,Q,\hat{s};\mu_R,\mu_F)\;.$$

 $\mathcal{W}^{\mathsf{F}}_{\mathsf{ab}}$ contains all previously cited contributions, plus PDFs evolution.

- In the original impact-parameter space formula, the PDFs are evaluated at the scale b_0/b .
- \Rightarrow involves an extrapolation of the PDFs in the non-perturbative region.
- PDFs will be evaluated at factorization scale, and evolution will be included in W^F_{ab}.

伺 ト イ ヨ ト イ ヨ

Fixed order calculations

Transverse-momentum resummation

Conclusions

The resummed component

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} \end{bmatrix}_{\mathrm{res}} (q_T, Q, s) = \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 f_{a/h_1}(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \\ \times \left[\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}q_T^2} \right]_{\mathrm{res}} (q_T, Q, \hat{s}; \mu_R, \mu_F)$$

$$\left[\frac{\mathrm{d}^2\sigma_{ab}}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}(q_T, Q, \hat{s}; \mu_R, \mu_F) = \frac{Q^2}{\hat{s}} \int \frac{b}{2} \,\mathrm{d}b \,J_0(b \, q_T) \,\mathcal{W}^F_{ab}(b, Q, \hat{s}; \mu_R, \mu_F) \ .$$

\mathcal{W}_{ab}^{F} contains all previously cited contributions, plus PDFs evolution.

- In the original impact-parameter space formula, the PDFs are evaluated at the scale b_0/b .
- \Rightarrow involves an extrapolation of the PDFs in the non-perturbative region.
- PDFs will be evaluated at factorization scale, and evolution will be included in \mathcal{W}_{ab}^{F} .

・ 同 ト ・ ヨ ト ・ ヨ

Fixed order calculations

Transverse-momentum resummation

Conclusions

The resummed component

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} \end{bmatrix}_{\mathrm{res}} (q_T, Q, s) = \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 f_{a/h_1}(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \\ \times \left[\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}q_T^2} \right]_{\mathrm{res}} (q_T, Q, \hat{s}; \mu_R, \mu_F)$$

$$\left[\frac{\mathrm{d}^2\sigma_{ab}}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}(q_T, Q, \hat{s}; \mu_R, \mu_F) = \frac{Q^2}{\hat{s}} \int \frac{b}{2} \,\mathrm{d}b \,J_0(b \, q_T) \,\mathcal{W}^F_{ab}(b, Q, \hat{s}; \mu_R, \mu_F) \ .$$

 \mathcal{W}_{ab}^{F} contains all previously cited contributions, plus PDFs evolution.

- In the original impact-parameter space formula, the PDFs are evaluated at the scale b_0/b .
- \Rightarrow involves an extrapolation of the PDFs in the non-perturbative region.
- PDFs will be evaluated at factorization scale, and evolution will be included in W^F_{ab}.

・ 同 ト ・ ヨ ト ・ ヨ

Fixed order calculations

Transverse-momentum resummation

Conclusions

The resummed component

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} \end{bmatrix}_{\mathrm{res}} (q_T, Q, s) = \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 f_{a/h_1}(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \\ \times \left[\frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}q_T^2} \right]_{\mathrm{res}} (q_T, Q, \hat{s}; \mu_R, \mu_F)$$

$$\left[\frac{\mathrm{d}^2\sigma_{ab}}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}(q_T, Q, \hat{s}; \mu_R, \mu_F) = \frac{Q^2}{\hat{s}} \int \frac{b}{2} \,\mathrm{d}b \,J_0(b \, q_T) \,\mathcal{W}^F_{ab}(b, Q, \hat{s}; \mu_R, \mu_F) \ .$$

 \mathcal{W}_{ab}^{F} contains all previously cited contributions, plus PDFs evolution.

- In the original impact-parameter space formula, the PDFs are evaluated at the scale b_0/b .
- \Rightarrow involves an extrapolation of the PDFs in the non-perturbative region.
- PDFs will be evaluated at factorization scale, and evolution will be included in W_{ab}^F .

/□ ▶ < 글 ▶ < 글

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

Computation of $\mathcal{W}_{ab}^{\mathcal{F}}$ in *N*-space \Rightarrow exponentiation.

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log\frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

$$\mathcal{G}_{N}(L;\frac{Q^{2}}{\mu_{R}^{2}}) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2}g_{N}^{(n)}(\alpha_{s}L;\frac{Q^{2}}{\mu_{R}^{2}})$$

$$\mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}}) = \sigma^{(\mathrm{LO}),F}(Q)\Big[1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n}\mathcal{H}_{N}^{(n),F}(\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\Big]$$

[Bozzi, Catani, de Florian, Grazzini, Nucl. Phys. B 737, 73 (2006)]

- \mathcal{G}_N includes all the *b*-dependence and the logarithmic terms. $Lg^{(1)}$ collects the LL contributions, $g^{(2)}$ the NLL ones, ...
- PDFs evolution is included in $\mathcal{H}_{ab, N}^{F}$.
- Both factors are computed perturbatively. NLL accuracy: need of $g^{(1)}$, $g_N^{(2)}$ and $\mathcal{H}_N^{(1), F}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

Computation of $\mathcal{W}_{ab}^{\mathcal{F}}$ in *N*-space \Rightarrow exponentiation.

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log\frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

$$\mathcal{G}_{N}(L;\frac{Q^{2}}{\mu_{R}^{2}}) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2}g_{N}^{(n)}(\alpha_{s}L;\frac{Q^{2}}{\mu_{R}^{2}})$$

$$\mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}}) = \sigma^{(\mathrm{LO}),F}(Q)\Big[1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n}\mathcal{H}_{N}^{(n),F}(\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\Big]$$

[Bozzi, Catani, de Florian, Grazzini, Nucl. Phys. B 737, 73 (2006)]

- \mathcal{G}_N includes all the *b*-dependence and the logarithmic terms. $Lg^{(1)}$ collects the LL contributions, $g^{(2)}$ the NLL ones, ...
- PDFs evolution is included in $\mathcal{H}_{ab, N}^{F}$.
- Both factors are computed perturbatively. NLL accuracy: need of $g^{(1)}$, $g_N^{(2)}$ and $\mathcal{H}_N^{(1), F}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

Computation of $\mathcal{W}_{ab}^{\mathcal{F}}$ in *N*-space \Rightarrow exponentiation.

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log\frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

$$\mathcal{G}_{N}(L;\frac{Q^{2}}{\mu_{R}^{2}}) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2}g_{N}^{(n)}(\alpha_{s}L;\frac{Q^{2}}{\mu_{R}^{2}})$$

$$\mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}}) = \sigma^{(\mathrm{LO}),F}(Q)\Big[1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n}\mathcal{H}_{N}^{(n),F}(\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\Big]$$

[Bozzi, Catani, de Florian, Grazzini, Nucl. Phys. B 737, 73 (2006)]

- \mathcal{G}_N includes all the *b*-dependence and the logarithmic terms. $Lg^{(1)}$ collects the LL contributions, $g^{(2)}$ the NLL ones, ...
- PDFs evolution is included in $\mathcal{H}_{ab, N}^{F}$.
- Both factors are computed perturbatively. NLL accuracy: need of $g^{(1)}$, $g_N^{(2)}$ and $\mathcal{H}_N^{(1), F}$.

- 4 同 6 4 日 6 4 日 6

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

Computation of $\mathcal{W}_{ab}^{\mathcal{F}}$ in *N*-space \Rightarrow exponentiation.

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log\frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

$$\mathcal{G}_{N}(L;\frac{Q^{2}}{\mu_{R}^{2}}) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2}g_{N}^{(n)}(\alpha_{s}L;\frac{Q^{2}}{\mu_{R}^{2}})$$

$$\mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}}) = \sigma^{(\mathrm{LO}),F}(Q)\Big[1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n}\mathcal{H}_{N}^{(n),F}(\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\Big]$$

[Bozzi, Catani, de Florian, Grazzini, Nucl. Phys. B 737, 73 (2006)]

- \mathcal{G}_N includes all the *b*-dependence and the logarithmic terms. $Lg^{(1)}$ collects the LL contributions, $g^{(2)}$ the NLL ones, ...
- PDFs evolution is included in $\mathcal{H}_{ab,N}^{F}$.
- Both factors are computed perturbatively. NLL accuracy: need of $g^{(1)}$, $g_N^{(2)}$ and $\mathcal{H}_N^{(1), F}$.

- 4 同 6 4 日 6 4 日 6

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

Computation of $\mathcal{W}_{ab}^{\mathcal{F}}$ in *N*-space \Rightarrow exponentiation.

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log\frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

$$\mathcal{G}_{N}(L;\frac{Q^{2}}{\mu_{R}^{2}}) = Lg^{(1)}(\alpha_{s}L) + \sum_{n=2}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n-2}g_{N}^{(n)}(\alpha_{s}L;\frac{Q^{2}}{\mu_{R}^{2}})$$

$$\mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}}) = \sigma^{(\mathrm{LO}),F}(Q)\Big[1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n}\mathcal{H}_{N}^{(n),F}(\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\Big]$$

[Bozzi, Catani, de Florian, Grazzini, Nucl. Phys. B 737, 73 (2006)]

- \mathcal{G}_N includes all the *b*-dependence and the logarithmic terms. $Lg^{(1)}$ collects the LL contributions, $g^{(2)}$ the NLL ones, ...
- PDFs evolution is included in $\mathcal{H}_{ab,N}^{F}$.
- Both factors are computed perturbatively. NLL accuracy: need of $g^{(1)}$, $g_N^{(2)}$ and $\mathcal{H}_N^{(1), F}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log \frac{Q^{2} b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$

• At large q_T (small b):

- Usual perturbation theory is valid.
- Use of the resummation is not justified.

• $L \rightarrow \tilde{L} \equiv \log \left(\frac{Q^2 b^2}{b_0^2} + 1 \right)$ to reduce resummation impact at large- q_T .

• Does not change anything at large b: $\tilde{L} = L + O(1/(b^2 Q^2))$.

• Reduces resummation impact at small $b: \tilde{L} \to 0$ as $b \to 0$.

(4月) (4日) (4日)

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log \frac{Q^{2} b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

- At large q_T (small b):
 - Usual perturbation theory is valid.
 - Use of the resummation is not justified.

• $L \to \tilde{L} \equiv \log \left(\frac{Q^2 b^2}{b_0^2} + 1 \right)$ to reduce resummation impact at large- q_T .

- Does not change anything at large b: $\tilde{L} = L + O(1/(b^2 Q^2))$.
- Reduces resummation impact at small $b: \tilde{L} \to 0$ as $b \to 0$.

・ 同 ト ・ ヨ ト ・ ヨ

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log \frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

• At large
$$q_T$$
 (small b):

- Usual perturbation theory is valid.
- Use of the resummation is not justified.

• $L \to \tilde{L} \equiv \log \left(\frac{Q^2 b^2}{b_0^2} + 1 \right)$ to reduce resummation impact at large- q_T .

• Does not change anything at large b: $\tilde{L} = L + O(1/(b^2 Q^2))$.

• Reduces resummation impact at small $b: \tilde{L} \to 0$ as $b \to 0$.

伺下 イヨト イヨ

Fixed order calculations

Transverse-momentum resummation

Conclusions

N-space and exponentiation

$$\mathcal{W}_{ab,N}^{F}(b,Q;\mu_{R},\mu_{F}) = \mathcal{H}_{ab,N}^{F}(Q;\frac{Q^{2}}{\mu_{R}^{2}},\frac{Q^{2}}{\mu_{F}^{2}})\exp[\mathcal{G}_{N}(L \equiv \log \frac{Q^{2}b^{2}}{b_{0}^{2}};\frac{Q^{2}}{\mu_{R}^{2}})]$$

• At large
$$q_T$$
 (small b):

- Usual perturbation theory is valid.
- Use of the resummation is not justified.

• $L \to \tilde{L} \equiv \log \left(\frac{Q^2 b^2}{b_0^2} + 1 \right)$ to reduce resummation impact at large- q_T .

- Does not change anything at large b: $\tilde{L} = L + O(1/(b^2 Q^2)).$
- Reduces resummation impact at small $b: \tilde{L} \to 0$ as $b \to 0$.

伺 ト イ ヨ ト イ ヨ ト

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions
The finite com	onent		

- Logarithmic terms and contributions proportional to δ(q_T) are included in the resummed component.
 - $\Rightarrow \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_{T}^{2}}\right]_{\mathrm{fin}} \text{ can be computed by}$

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}\Big|_{\mathrm{f.o.}}.$$

• $\left\lfloor \frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2} \right\rfloor_{\mathrm{f.o.}}$ is evaluated at a specific order of the perturbation theory.

• $\left[\frac{d\sigma}{dq_T^2}\right]_{res} |_{f.o.}$ is the expansion of the resummed component at the same order.

高 と く ヨ と く ヨ と

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation ○○○○○●○○○	Conclusions
The finite comr	onent		

 Logarithmic terms and contributions proportional to δ(q_T) are included in the resummed component.

 $\Rightarrow \left[rac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}
ight]_{\mathrm{fin}}$ can be computed by

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{fin}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{res}}\Big|_{\mathrm{f.o.}}.$$

• $\left[\frac{\mathrm{d}\sigma}{\mathrm{d}q_T^2}\right]_{\mathrm{f.o.}}$ is evaluated at a specific order of the perturbation theory.

• $\left[\frac{d\sigma}{dq_7^2}\right]_{res}\Big|_{f.o.}$ is the expansion of the resummed component at the same order.

伺 と く ヨ と く ヨ と …

Summary

- At small q_T , the resummed component dominates, and the finite term is small.
- At intermediate q_T, both contributions are consistently matched and double-counting of any term is prevented.
- At large q_T , the resummed component becomes negligible (see \tilde{L}), and the usual fixed order perturbation theory is recovered.
- Non-perturbative effects ?

伺 ト イ ヨ ト イ ヨ ト

Summary

- At small q_T , the resummed component dominates, and the finite term is small.
- At intermediate q_T, both contributions are consistently matched and double-counting of any term is prevented.
- At large q_T , the resummed component becomes negligible (see \tilde{L}), and the usual fixed order perturbation theory is recovered.
- Non-perturbative effects ?

伺 ト イヨト イヨト

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation ○○○○○○●○	Conclusions
Non-perturbative	effects		

- Transverse-momentum distribution is affected by non-perturbative (NP) effects which are important in the large-*b* region.
- For Drell-Yan like processes, we multiply the previously cited W_{ab}^F function by a NP form factor obtained through experiment.
- Ladinsky-Yuan (LY-G):

[Ladinsky, Yuan, Phys. Rev. D 50, 4239 (1994)].

- Brock-Landry-Nadolsky-Yuan (BLNY): [Landry, Brock, Nadolsky, Yuan, Phys. Rev. D 67, 073019 (2003)
- Konyshev-Nadolsky (KN):

[Konyshev, Nadolsky, Phys. Lett. B 633, 710 (2006)].

/□ ▶ < 글 ▶ < 글

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation ○○○○○○●○	Conclusions
Non-perturbative	effects		

- Transverse-momentum distribution is affected by non-perturbative (NP) effects which are important in the large-*b* region.
- For Drell-Yan like processes, we multiply the previously cited W_{ab}^F function by a NP form factor obtained through experiment.
- Ladinsky-Yuan (LY-G):

[Ladinsky, Yuan, Phys. Rev. D 50, 4239 (1994)].

• Brock-Landry-Nadolsky-Yuan (BLNY):

[Landry, Brock, Nadolsky, Yuan, Phys. Rev. D 67, 073019 (2003)].

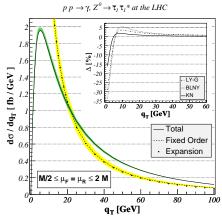
• Konyshev-Nadolsky (KN):

[Konyshev, Nadolsky, Phys. Lett. B 633, 710 (2006)].

Fixed order calculations

Transverse-momentum resummation

q_T -resummation for slepton-pair production at the LHC



NLL + LO $\mathcal{O}(\alpha_s)$ results for SPS 7

- Finite result at small q_T, enhancement at intermediate q_T.
- Improvement of scale dependence (NLL+LO: $\lesssim 5\%$; LO: 10%).
- Non-perturbative effects cannot be neglected at small q_T.

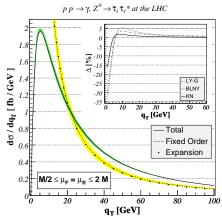
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[[]Bozzi, BF, Klasen, hep-ph/0603074]

Fixed order calculations

Transverse-momentum resummation

q_T -resummation for slepton-pair production at the LHC



NLL + LO $\mathcal{O}(\alpha_s)$ results for SPS 7

- Finite result at small q_T, enhancement at intermediate q_T.
- Improvement of scale dependence (NLL+LO: $\lesssim 5\%$; LO: 10%).
- Non-perturbative effects cannot be neglected at small q_T.

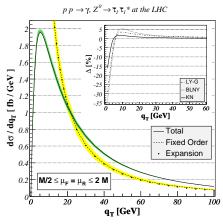
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

[[]Bozzi, BF, Klasen, hep-ph/0603074]

Fixed order calculations

Transverse-momentum resummation

q_T -resummation for slepton-pair production at the LHC



NLL + LO $\mathcal{O}(\alpha_s)$ results for SPS 7

- Finite result at small q_T, enhancement at intermediate q_T.
- Improvement of scale dependence (NLL+LO: \lesssim 5%; LO: 10%).
- Non-perturbative effects cannot be neglected at small q_T.

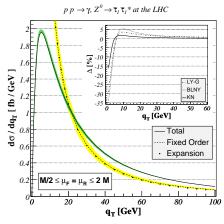
→ 3 → < 3</p>

[[]Bozzi, BF, Klasen, hep-ph/0603074]

Fixed order calculations

Transverse-momentum resummation

q_T -resummation for slepton-pair production at the LHC



NLL + LO $\mathcal{O}(\alpha_s)$ results for SPS 7

- Finite result at small q_T, enhancement at intermediate q_T.
- Improvement of scale dependence (NLL+LO: \lesssim 5%; LO: 10%).
- Non-perturbative effects cannot be neglected at small q_T .

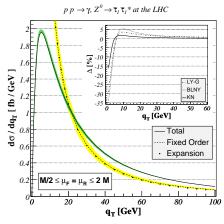
- ₹ 🖹 🕨

[[]Bozzi, BF, Klasen, hep-ph/0603074]

Fixed order calculations

Transverse-momentum resummation

q_T -resummation for slepton-pair production at the LHC



NLL + LO $\mathcal{O}(\alpha_s)$ results for SPS 7

- Finite result at small q_T, enhancement at intermediate q_T.
- Improvement of scale dependence (NLL+LO: \lesssim 5%; LO: 10%).
- Non-perturbative effects cannot be neglected at small q_T .

< ∃ >

[[]Bozzi, BF, Klasen, hep-ph/0603074]

Introduction	and	Motivations

Fixed order calculations

Transverse-momentum resummation

Outline

- Introduction and Motivations
 - The Minimal Supersymmetric Model
 - Slepton production at hadron colliders
 - Tau slepton identification
 - Importance of transverse-momentum distribution
- 2 Fixed order calculations
 - Leading order
 - Next-to-leading order
 - Fixed order failure
- 3 Transverse-momentum resummation
 - Main features
 - The resummed component
 - The finite component
 - Non-perturbative effects
 - q_T -resummation for slepton-pair production at the LHC

Conclusions

C			
Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions

Summary

- Slepton-pair hadroproduction
 - Unpolarized cross sections known at NLO
 - Polarized cross sections known at LO with sfermion mixing.
 - Beam polarization and sfermion mixing correlated.

- q_T-resummation for sleptons
 - Accurate q_T -spectrum needed by experiment
 - Mass determination.
 - Spin determination.
 - Universal formalism implemented.
 - Important at small and intermediate q_T .
 - Scale dependence reduced.
 - Non-perturbative effects important at small q_T .
 - Total cross section reproduced.

Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions
Summary			

- Slepton-pair hadroproduction
 - Unpolarized cross sections known at NLO
 - Polarized cross sections known at LO with sfermion mixing.
 - Beam polarization and sfermion mixing correlated.

- q_T -resummation for sleptons
 - Accurate q_T -spectrum needed by experiment
 - Mass determination.
 - Spin determination.
 - Universal formalism implemented.
 - Important at small and intermediate q_T .
 - Scale dependence reduced.
 - Non-perturbative effects important at small q_T .
 - Total cross section reproduced.

A (1) > (1) = (1) (1)

<u> </u>			
Introduction and Motivations	Fixed order calculations	Transverse-momentum resummation	Conclusions

Summary

- Slepton-pair hadroproduction
 - Unpolarized cross sections known at NLO
 - Polarized cross sections known at LO with sfermion mixing.
 - Beam polarization and sfermion mixing correlated.

- q_T -resummation for sleptons
 - Accurate q_T -spectrum needed by experiment
 - Mass determination.
 - Spin determination.
 - Universal formalism implemented.
 - Important at small and intermediate q_T .
 - Scale dependence reduced.
 - Non-perturbative effects important at small q_T .
 - Total cross section reproduced.