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ALPGEN is

hep-ph 0206293 M.Mangano, M.Moretti, F.Piccinini, R.Pittau and A.Polosa

• A (tree level) ME generator (up to 10 partons, can be increased if

needed)

• parton level description interfaced to PS (HERWIG, PITHYA) ⇒ full

showering and hadronization of the event

• fermions are massive

• for processes with heavy particle in the final state spin correlation

is fully taken into account (in the narrow width approximation)

• ME PS matching option avaliable

• to provide a (better) description of process dependent features

(partonic ME contributing, phase space optimization, heavy

object decay, matching prescription, ...) ALPGEN is actually a

collection of packages devoted to various (SM) processes.



Shopping list

• W ∗QQ̄+ n-jets, W ∗ ≡ lνl and Q = b, t, (c).

• W ∗ + n-jets jets ≡ “light” quarks, gluons

• Z∗/γ∗QQ̄+ n-jets

• Z∗/γ∗ + n-jets

• QQ̄+ n-jets

• QQ̄QQ̄+ n-jets

• QQ̄+H + n-jets

• n-W +m-Z + l-H + n-jets

• n-jets

• m-γ + n-jets

• t(+W, +b, +Wb) + n-jets

• H + n-jets ggH effective coupling (mt →∞)

• W ∗(Z∗/γ∗) +m-γ + n-jets in progress

• QQ̄+m-γ + n-jets in progress



The ALPHA Algorithm
F. Caravagliosand M. Moretti PLB 358 (1995) 332

F. Caravaglios, M. L. Mangano, M. Moretti and R. Pittau NPB 539 (1999) 215

The Idea: The Matrix Element ‘is’ the Legendre Transform Z of the (effective)

lagrangian Γ (one-particle-irreducible Green Functions generator) → the problem

can be recasted as a minimum problem, more suitable for a numerical approach

Z(Jα) = −Γ(φα) + Jα(x)φα(x)

where φα are the classical fields defined as the solutions of

Jα =
δΓ

δφα
,

and the Jα play the role of classical sources.

Jα(p) =
n∑

j=1

εαµδ(p− pj)

notice finite number of degrees of freedom

A ∼ ∂Z

∂Jα1 . . . ∂J
γ
n
|Jα1 =0,...,Jγn=0

(Jαm = Jα(pm), ∼→= after truncation)



Working Case: Pure YM theory

• At tree level Γ = L
LYM (A) = −1/2F aµνF

a
µν + JµAµ

introducing auxiliary fields the lagrangian in momentum space is

LYM (A) = −1/2(pµA
a
ν − pνAaµ)2 + gfabc(pµA

a
ν − pνAaµ)AbµA

c
ν

−(Baµν)2 − 2gfabcB
a
µνA

b
µA

c
ν + JµAµ

1. J standard source terms: J(p) =
∑n

j=1 ε
a
µδ(p− pj), i.e. it contains the relevant

excitation for the external particles

2. A(p) are found as solutions of the equation of motion (Feynman Gauge)

Aµ(p) =
g

p2
fabc

[
2(p− k) ·Ab(q)Acµ(k)− 2qµA

b(q) ·Acµ(k)

−Bbµν(q)Acν(k)
]

+
1

p2
Jµ(p)

Baµν(p) = −gfabcAbµ(q)Acν(k)

(1)

(Integration
∫
δ(p+ q + k)dkdq is understood)

• The scattering amplitude is proportional to LYM (A) with A as in (1)

The (1) equations of motion are solved iteratively (expansion in g): the problem is
solved with a loop of matrices multiplication



•
Jaµ =

n∑

j=1

εaµ(p)δ(p− pj)

•

Aaµ(pj) = εaµ(pj)

Baµν(pj) = 0

Aaµ
=

propagator Jaµ

(notice truncation)

•

Aaµ(pj + pk) =
gfabc

(pj + pk)2

[
2(pj + pk) ·Ab(pj)Acµ(pk)

−2pj ·Ab(pk)Acµ(pj)−Bbµν(pj)A
c
µ(pk)

]

Baµν(pj + pk) = −gfabcAb(pk)Acµ(pj)

=



• . . .

= ; = +

Beating n!

• . . .

• a few remarks

1. .

, ... Pure Numbers at each step !!!
.

2. At any stage terms like Aaµ(· · ·+ pk + pk + . . . ) (two equal fourier frequencies) are

dropped. This would come out from Pauli principle in the case of fermion and this terms

do not affect the result.

3. For a given process like n external gluon, for example, one should compute up to

Aaµ(pj1 + · · ·+ pjn) terms, i.e. a finite number of terms. In practice, using the equation of

motion, only terms up to Aaµ(pj1 + · · ·+ pjn/2
) are required (for 6 and 7 external gluons the

Aaµ with up to 3 frequencies are required, for 8 and 9 external gluons up to 4 frequencies).

• The final result is obtained as

A(pj1 , . . . , pjn) = LYM (A)

where the A are given in the above steps.



A ∼ + + ...

.

1. The prescription to drop terms with twice the same frequency is still kept

A(· · ·+ pj + . . . )A(· · ·+ pj + . . . ) = 0. Notice that because of this prescription no

functional derivative is required.

2. Four momentum conservation is enforced dropping products which do not contains all

external fourier frequencies (for n = 4, A(p1 +p4)A(p2)A(p3) is ok A(p1)A(p2)A(p3) is not.

3. In this final step, again because of the equation of motion, only the interaction terms in

LYM (A) are computed and source and kinetic ones are dropped.

• loop of matrix multiplications

• number of building blocks ∼ poles of S matrix

• CPU cost ∼ Kn (K ∼ 2÷ 4 depending on process and lagrangian



The ALPHA code

• The above algorithm has been implemented into a FORTRAN code ALPHA for the

authomatic calculation of fully massive, tree level scattering amplitude, using

the standard model lagrangian as input (and extensively tested using

benchmark processes of interest at LEPII)

1. authomatic calculation → reliability

2. compact storing of the information (typical size of the arrays A ∼ 2next)

3. fully massive matrix element

4. reasonable CPU time performances: (slow growth, power law like, with

number of external particle)



Challenges in QCD calculation

Process n = 7 n = 8 n = 9 n = 10

g g → n g 559,405 10,525,900 224,449,225 5,348,843,500

ME per minute 28000 9170 2870 870

qq̄ → n g 231,280 4,016,775 79,603,720 1,773,172,275

Table 1:

Number of Feynman diagrams corresponding to amplitudes with different numbers of quarks and

gluons. CPU performance on a pentium III 850MH

(notice: n = 10 expected in some R-parity breaking scenarios)

• One would like to be able to complement the calculation of parton-level matrix
elements with the evaluation of the full hadronic structure of the final state.

1. Dual amplitudes can be easily evaluated using the ALPHA algorithm, by taking N

sufficiently large.



2. Dual amplitudes correspond to planar amplitudes in the N →∞ limit of
QCD =⇒ identification of a specific colour flow =⇒ soft-gluon emission
corrections to the hard process (Via PS, incoherent sum over the emission

probabilities from each individual colour-string).

Figure 1:

Colour structure of the n-gluon amplitude in the large-N limit.

An example in the simpler and perhaps more familiar QED contest:

(a) e+e− → e+e−;

(b) t and s channels interfere and are associated with a different radiation pattern.

(c) Go to the infinite (in practice two is enough) lepton flavour limit;

(d) compute e+e− → µ+µ− and e+µ− → e+µ− to obtain separately s and s channels contribution

separately.

(e) compute the relative weight of the two channels and select one on a statystical basis.



3. Sudakov form factors to next-to-leading log (HERWIG)

The prescription to correctly generate the parton-shower associated to a given event in the

large-N limit is therefore the following:

1. Calculate the (n− 1)! dual amplitudes corresponding to all possible planar

colour configurations.

2. Extract the most likely colour configuration for this event on a statistical basis



Efficient event generation and 1/N corrections

• the number of dual amplitudes grows like n!

• size of non leading 1/N corrections?

• Solution:

1. choose a standard SU(3) orthonormal basis (Gell-Mann matrices for

example)

2. randomly select a non-vanishing colour assignement for the exernal gluons

3. if the event is accepted choose randomly among the contributing dual

amplitudes a color flow on the basis of their relative weight

Two advantages

– dual amplitudes required only for a small number of phase space points

– contributing dual amplitudes to a given external coulor assignment �
than total number.



From partons to jets: why do we need “matching?”

• we want to describe events with many hard jets in the final state:

we need ME description AND parton evolution to hadrons (PS).

• Parton-level cuts should not be harder than jet cuts

pTparton ≥ pTcut = Emin
Tjet ∆R(parton−parton) ≥ ∆Rcut = ∆Rjet

One should start from softer parton-level cuts

• Due to softer cuts some events are obtained as:

– two (or more) hard partons are clustered in the same jet

– one (or more) jet is obtained from hard PS radiation

• double counting (suppressed by O(αS))

• ME soft/collinear divergencies not dumped by Sudakov

suppression.



Black ME (initial partons); Blue ME (final partons); Red PS Two
different emission leading to the same final state kinematics. In the
left one the matrix element has no Sudakov damping for
soft/collinear emission, leading to a divergent cross section.

• Ideally the final jet cross-section should be independent of the

parton-level generation cuts, even in the limiting case pTmin → 0

and ∆Rcut → 0

• The double counting effect is suppressed by at least one power of

αS. Naively it should be small so why bother?

• A fixed order calculation accounting for the emission of coloured

particles (of QCD origin) is divergent in the IR/Collinear limit.



• This behaviour can be controlled adding toghether virtual and

real contribution of the same order (not avaliable for large

multiplicities), still the prediction in the soft/collinear region is

unreliable: resummation required

• PS includes resummation, fixed order ME doesn’t

Cross section (nb) for the production of a W (→ eνe) + jets at the LHC. The hardest jet is

required to have pT > 40 GeV. The cross section is plotted against the cut on the parton pT at

the generation level (NO MATCHING). The soft/collinear sensitivity is clearly seen.



W

jet

BLACK: ME initial state partons. BLUE: ME final state partons.

RED: PS partons

• The growth is due to this class of events: the ME weight grows up

to ∞ for soft/collinear emission.

• Notice that this affects distributions as well

• That’s why we want to describe these events with the PS and

treat only hard emissions with ME



Towards matching of ME & PS

For e+e− physics a solution has been proposed

S. Catani et al., JHEP 0111 (2001) 063

L. Lönnblad, JHEP 0205 (2002) 046

which avoids double counting and shifts the dependence on the

resolution parameter beyond NLL accuracy

The method consists in separating arbitrarily the phase-space regions

covered by ME and PS, and use vetoed parton showers together with

reweighted tree-level matrix elements for all parton multiplicities

Proposal to extend the procedure to hadronic collisions: no proof of

NLL accuracy

F. Krauss, JHEP 0208 (2002) 015



The CKKW procedure has been successfully tested on LEP data

e.g. S. Catani et al., JHEP 0111 (2001) 063

R. Kuhn et al., hep-ph/0012025

F. Krauss, R. Kuhn and G. Soff, J. Phys. G26 (2000) L11

Recent work for hadronic collisions

• Herwig (P. Richardson)

• Pythia (S. Mrenna)

S. Mrenna and P. Richardson, JHEP 0405 (2004) 040

• SHERPA with APACIC++/AMEGIC++

F. Krauss, A. Schälicke, S. Schumann and G. Soff, Phys. Rev. D 70 (2004) 114009

F. Krauss, A. Schälicke, S. Schumann and G. Soff, Phys.Rev. D72 (054017) 2005.



An alternative proposal

M.L. Mangano, FNAL MC Workshop, October 2002

• generate event sample (pT > pTmin ∆R > ∆Rmin

• shower the event and reconstruct particle clusters (jets) with a
cone algorithm (pTjet > pTmin, Rjet ≥ Rmin)
– Note: these clusters are just a computational device to define the sample. they don’t need

to coincide with “experimental” jet

• define the matching of a parton (LO matrix element) and a

cluster as follows: a parton matches a cluster if the separation

∆R between the parton and the cluster is smaller than ∆R̄ (an

arbitrary fixed quantity ∆R̄ ∼ ∆Rmin

• reject the event if more than one parton match the same cluster

or if a parton doesn’t match any cluster

• for exclusive samples also events with number of clusters different

(larger) from number of partons are rejected



• reweight the ME reconstructing the branching tree and assigning

to each branching αS(Qbranch) (to mimic the PS)

αS reweighting

Matches Doesn’t match

Left: all ME partons inside a distinct cone; Right two ME partons inside the same

cone, one hard jets made from the shower

Doesn’t match Inclusive: matches
Exclusive: doesn’t match.

Left: a soft ME partons not inside a cone; Right all ME partons inside distinct

cone, one extra hard jets made from the shower, since the number of jets is larger

than matrix element partons, accepted only for inclusive samples



One still expects not better than LL (Sudakov) accuracy. However we expect a

strongly reduced NLL sensitivity. From the practical point of view it is enough

that these residual effects are smaller than the other systematics of the calculation

Ideally the whole prescription leads to samples independent from generation cuts.

In practice the dependence from generation cuts is a measure of the success of the

matching prescription

Cross section (nb) for the production of a W (→ eνe) + jets. The hardest jet is required to have

pT > 40 GeV. The cross section is plotted against the cut on the parton pT at the generation

level. Crosses: no matching. Boxes: matching (one-jet inclusive sample)



Example: W + 3 jets at Tevatron

Cross section for W + 3 jets at Tevatron as a function of generation cuts (∆Rparton ETparton).

The soft/collinear divergence is clearly seen. This feature is even more pronounced than in the

W + 1 jet case: the larger the number of jets the larger the number of potentially “dangerous”

Logs.



Figure 2: pT,W spectrum. The points represent run I CDF data. The curves correspond to the

subsequent inclusion of samples with higher multiplicity, form the W + 0 jet, up to the W + 4 jets

case. The right plot is the same as the left one, with an enhanced low-pT scale.



Figure 3: Effect of different genertaion cuts on the integrated pT,W spectrum. The right panel

shows the ratios of the samples generated with PT20, PT30 and PT10R07, divided by PT10. The

right panel shows all four samples divided by a plain (no ME correction) HERWIG W sample.

PT10, PT20, PT30 : PT > 10, 20, 30GeV , ∆R > 0.4

PT30R07 : PT > 30, ∆R > 0.7



Work in progress

• Assesment of matching systematics: internal consistency, resolution parameters dependencs
(likely to be done on process by process basis)

• comparison against other codes and approaches (SHERPA, Madgraph, MC@NLO, ...)

• study of alternative matching prescriptions

• inclusion of new processes and new effects (anomalous couplings, ...)


