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SCET for Colliders ...

e Introduction

e Overview of SCET literature
(hard QCD processes outside B physics)

e Parton showers [Bauer, Schwartz, hep-ph/0604065]
e Factorization in DIS (X—1)  (Becher, MN, Pecjak, to appear]

e Threshold resummation in momentum space
(DIS and Drell-Yan) [Becher, MN,, hep-ph/0605050]

e Conclusions



Introduction

e Generic problem in QCD:
Resummation for processes with >1 scales

Interplay of soft and collinear emissions
— Sudakov double logarithms

Jet physics: M2 « Q2
Soft: low momentum p*—0 '@ Mx
Collinear: p || px with p>—0

Examples: DIS, fragmentation, Drell-Yan, Higgs
production, event shapes, inclusive B decays, ...

T

(see talk by T. Becher) 4



Introduction

e Problems of scale separation often best addressed
using effective field theory

Soft-Collinear Effective Theory

[Bauer, Pirjol, Stewart (2000, 2001)]

e Natural framework for studying questions of
factorization, resummation, and power corrections

e Approach first developed for B physics, later applied
to other hard QCD processes



Introduction

e SCET is not the invention of the wheel
(given 20+ year history in this field)

e Most of what can be done with SCET can be done
with conventional techniques (in fact, we never use
SCET Feynman rules!)

e However, SCET may provide a novel perspective on
factorization, scale separation, resummation, and
power corrections in applications where interplay of
soft and collinear radiation is relevant

e Existing analyses just the beginning; much room for
future work



Overview of SCET literature

e Factorization for n-y form factor, light-meson form
factors, DIS, Drell-Yan, and deeply virtual Compton
scattering [Bauer, Fleming, Pirjol, Rothstein, Stewart (2002)]

e Factorization (or “non-factorization™) and threshold
resummation in DIS for x—1

YAy [Manohar (2003, 2005); Pecjak (2005); Chay, Kim (2005);
<L Idilbi, Ji (2005); Becher, MN (2006); Becher, MN, Pecjak (in prep.)]
S
o

e p, resummation for Drell-Yan and Higgs production
[Gao, Li, Liu (2005); Idilbi, Ji, Yuan (2005)]

e Threshold resummation for Higgs production
[Idilbi, Ji, Ma, Yuan (2006); Idilbi, Ji, Yuan (2006)]
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Overview of SCET literature

e Nonperturbative effects on jet distributions in e*e-
annihilation [Bauer, Manohar, Wise (2002); Bauer, Lee, Manohar, Wise (2003)]

e Universality of nonperturbative effects in event

vAg
shapes <& [Lee, Sterman (2006)]
A
e Parton showers <‘,ZVOZ'> [Bauer, Schwartz (2006)]
In this talk:

e Factorization and threshold resummation in DIS and Drell-
Yan production

e Parton showers (briefly...)
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Parton Showers

[Bauer, Schwartz, hep-ph/0604065]



An interesting proposal :

e Process of parton showering as a sequence
of hard matchings in SCET onto operators
containing increasing number of hard-
collinear fields

e Sudakov logs resummed
using RG equations

e Straightforward to go
beyond LL approximation

(Courtesy M. Schwartz)
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An interesting proposal

e Leading effective operator (two collinear
fields) same as in Drell-Yan

2-loop matching coefficient known (see below)
3-loop anomalous dimension known (see below)
e Questions:

Is this really an advance over existing approaches
(MC@NLQO)?

How to implement in a generator?
Details of calculations (NLO and beyond)?

e Eagerly await long paper ...! 3
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SCET analysis of DIS for x—1

e Simplest example of a
hard QCD process

e SCET can be used to o
rederive elegantly all Dy ——X
existing results

e Provides much simpler
result than conventional

approach for threshold ~ ® Cross section:
resummation

Q> > Q*1—=z)> AE‘)CD

~ My

d20/dx-dQ? ~ F,(x,Q2)
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SCET analysis of DIS for x—1

e Will discuss:
Factorization for x—1
Threshold resummation at NNLO (N3LL)
Connection with conventional approach
Numerical results

14
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Factorization for x—1

e QCD factorization formula:

1
ns ~ : ‘5 — & /NS
FM(z, Q%) = E 6?3 OV (Q%, p)|* Q* f dg .J (Qz ﬁ,u.) Py (&5 1)

. xI
q i

[Sterman (1987); Catani, Trentadue (1989); Korchemsky, Marchesini (1992)]

e Most transparent to derive this in SCET:
need hard-collinear, anti-collinear, and soft-
collinear modes (called “soft” in the literature)

e Resum threshold logarithms by solving RGEs of
SCET in momentum space

16



Factorization for x—1

e Momentum modes in
Breit frame (— fields in
SCET):

o Hard: p,~Q(1,1,1)

o Hard-collinear (final-state
jet): pp. ~ Q(g,1,Ve)

o Anti-collinear (initial-state Fig 31 Leading regions for DIS.
nucleon): p.~ Q(1,A%,1) [Sterman (1987)]
e Soft-collinear (“soft”)
messengers:

P.. ~ QX2 \e)
(here e=1-x and A~A/Q)

17



SCET factorization: Outline

[Becher, MN, Pecjak, to appear]
e Step 1: Athard scale y~Q, e Step 3: After

match QCD vector cu.rrent decoupling, vacuum
grg(éfurrent operator in matrix element of hard-
_ . collinear fields canmbe
e Step 2: Hard-collinear and _
anti-collinear fields can evaluated in
interact via exchange of perturbation theory (for
soft-collinear particles; at u~M,=QV1-x)

leading power, their _ _
couplings to hard-collinear e Step 4: Identity

fields can be removed by remaining nucleon
field redefinitions matrix element over

anti-collinear and soft-
collinear fields with 18

PNF in anAnnint raninn



SCET factorization

e Step 1: current matching
(") () — [ At Cv(t, -, p) (EW2) (22) 7 (W o) (2 + )

— Cy (=g Py (GW5) () 7 (W60 (@)

QZ
» Implication for hadronic tensor:

W (p, ) = i [ At s (N (p)| T{J*(x) T (0)} [N (p))

X (N T{EW:) (22) 71 (W) (@) (EreTie) (0) 1 (WIE) (0} [N ()



SCET factorization

e Simplest to obtain hard matching coefficient
from bare on-shell QCD form factor

[Kramer, Lampe (1987, E: 1989); Matsuura, van Neerven (1988);
Gehrmann, Huber, Maitre (2005); Moch, Vermaseren, Vogt (2005)]

e Matching converts IR poles into UV poles
(subtraction of scaleless SCET graphs):

CV(CQQ? u) = lim ZV(Ev 622* u) E)are(Ev 622)

e—0

UV renormalization factor 20
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SCET factorization -
e 2-loop result (with L=In(Q?%/u?)):
¥ . 2 , 9
Cy(Q2, 1) = 1+ (”;?S (_LQ +3L -8+ %) +Cg (Z—;)z CrHp +CaHs+ TrngHyl
with:
L* 25 w2\ ., 45 372 255 Tw? 837t
Hp = = =31 (7‘E)L (‘7‘7 24@)“ TN
11 233 w2\ ., /2545 1172
fu:ngB C"E--?>L%+(54 5 —2@011

51157 33772 11x7* 313
. — + +
648 108 45 0

4 38 418 472 4085 2372 4

— _ L+ —+ +
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SCET factorization

e Step 2: decoupling transformation

Enelr) — Su() &) (x),  Al(x) — Sale_) A (@) ST ()

» Vacuum matrix element over hard-collinear fields
factorizes into a jet function:

O T{(W,."6) () (€3 ) (0)} o) = (o] 7 [’ﬁ—ﬁ W) () 0) W(0) 2 o
St 2t
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SCET factorization e

e Step 3: compute jet function perturbatively
(known at 2-loop order) quark propagator in

light-cone gauge

%"ﬁ, pJI () = fd4$ =i (0] T {%"’1”T(0)’L/»‘(0)'L,/_J(:c)W(:c)%} o

6666.6 000 [
<500 <507 <507 I, S 2,
(§S000g,  (§0005, (§0002, %, & Sy B
® 8 <9 & g 5 & J &g &9 9 o
(77 IR 5 ]
(S, SR, SR, @GGG@%«
& . 2 s £2 2 S £ 2 2 & B 2
S SHN% 2 S 8§ 3 3 g £ g 2 S = 2
& 2 B &—! e © 7@ ® . +®
S0, 6585000, 666500077, S
& 2 2N S O & gy & & 2
s B 2 $ N § 2, S 8 2
&S B & 2 _ & e
D66 Zrses®
2 ST R i
S8 &0y, @66 T, Q@G@}_@?@ﬂ (§568000Tg5
SIS & 2 § 2\ & BN
IS & 2 IS 2 g e é)%gGﬁ_G 66057 FJ@;%
&6 ® ® “® & " ;
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SCET factorization

e Step 4: identify PDF in endpoint region

< I dte” P (N (p)] (EWe) (tn) [tn, 0] g (Wi&e) (0) [N (p))

&~ ¢

(€, 1)

/‘ dre s (V)] (€ W) ) & Welo) (W) 0) IV )

W

Z(m, dt e TSP T (t)

/ s
soft-collinear Wilson loop:
(0] SL(tn) [tn, 0]. S=(0) |0) p L

[KorChemSky, MarCheSini (1992)] Fig. 4.2 Division of lines in LC distributionas x =1 24
[Sterman (1987)]
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Threshold resummation

e Traditionally, resummation is performed in
Mellin moment space

e Landau poles (in Sudakov exponent and Mellin
iInversion)

e Mellin inversion only numerically

e Non-trivial matching with fixed-order calculations
IN momentum space
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Threshold resummation

e Define moments of structure function and
PDF:

1
Fn(Q) = [ deaV @ Q?)

—C?\ QZ )u,f 2926)11 )u,f

e Short-distance coefficients Cy can be written:

CNn(Q?, i) = go(Q?, 1p) exp [GN(Q?, pur)]

|

N-independent

27



Threshold resummation

e Resummed exponent:

‘ Z
GN(QZ’ ,Llf) = / d2 -

0

(1—2)Q% di:2
X / — Ay(as(k)) + By (s (QV1 — 2))

e Integrals run over Landau pole in running couplg.
(ambiguity ~(/\/M,)? for DIS, ~A\/M, for Drell-Yan)

e Additional singularity encountered in Mellin
inversion (physical scales in moment scales are
Q2 and Q?/N)
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Threshold resummation

e Solving RG equations in SCET, we obtain all-
orders resummed expressions directly in
momentum space (X space)

Transparent physical interpretation, no Landau
poles, simple analytical expressions

Reproduce moment-space expressions order by
order in perturbation theory

e Understand IR singularities of QCD in terms
of RG evolution (UV poles) in EFT

29



| X
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| X
-4
Evolution of the hard function |:
e RG equation: e RG functions:
dCy (Q2, 1) e Sudakov exponent
dln p o :
e I i () r 1o/
‘ Q2 e ) = — | de e doy
= [Feusp(es )111#—+ as) | Cv(Q% p) S(v, p) = (/) o B(a) /) Bla’)
- ~ A as(v as(v

0 ;
—2a D Zx(/l)(Qz! )

e EXxact solution:

Cy (CQZ /LL) [2‘5 (/—” /LL) — Ay (/‘Lh? /-5)]
2

= ex
C —ar (ph,p) :
(% O (@ )
'h

e Anomalous exponent

as () Lo(a)
ar(v, jt) = — / dov C;?pu)
s (V) :

» Functions of running
couplings ay(M), ag(v)
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3-loop anomalous dimension y

Yo = —6Cr
W = C% (=3 +4n? — 48(3) + CrCy (—%— “;2 + 52 C>+C1 Trny ('?b;)+§
15 =Ch (—20 — 677 — li — 136¢3 + &m +450@,)

e ( 121 . 4lgr~ 5 4??34 B 105% G — l()u Gy — 940()

34636 51887 44}?" 3856 )
3

+ CrCaTrng (_ 70 23 | 15 27

. oo o (19336 807 64
Cr T2 ) _ __
T ( 729 21 27 Ci)
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Evolution of the jet function

e Integro-differential evolution equation:

d.J(p?, )
dIn p

2

[zrmp< ) 497 )] 0% 1)

T

2

; e JWP ) — 7, )
— Zrcusp(a'ﬁ')/ d'pfz . 2 n'2
0 pe—=0p

e Exact solution (via Laplace transformation):

S = o [--4S(,u?;, Vi v ;J)] with:

. e = gz y
a1 () 72 (M?) : n=2 ;of’ur[ ()]
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Evolution of the jet function

e 2-loop result:

~ C (X g 2’]"2 g 2
](L, /J;) B e 21° — 3L + 7 — ‘—t + Cr (—) [CFJF + CyJs+ Tpn.f.]f]
A7 3 A7
L. . [Becher, MN, hep-ph/0603140]
with:
‘ 37 472\ . 45 205 9772 617
Jp =20 —6L° + | = — — | L> 4+ | —— + 472 — 24¢3 | L - _6C
I 0 +(2 3) +< oy T CS) T3 o T op 0
22 . 367 272 3155 1172
Jy = ——=13 _ L2 4+ [ — 40Ca ) L
Ja o T ( 18 3 ) i ( 2 T g T )Q)
53120 15572 377
_ _ — 18
T 36 180 8Cs
j, - 85 B8, (494 e i 40{37 1372
| 9 27 9 162 9



3-loop anomalous dimension yJ :

Yo = —3('.*1:
A S 1769 117> (242 4p?
':,-'l” — ;) (—5 -+ 2"5"") —_ 24C;;) —+ (YFCIA (— =1 - 9 + 40(,-:;) + C-FIF'H.J( ( 57 T 9 )

5 151 20572 247w* 844 872
—|—C,EC,4(— : + i + = — {3 — Q+—10C>

derived 4 9 135 3

(see below)

2916 243 10 9
4664  327*  1647* , 208 )
26

; 412907 41972 197% 5500 88 .
L 02 (—_ = S, ] (s — c; _39@.)

+ C*;)_-:Z"F-Hf ( 57 == 0 — 135

5476_+ 1180w2_+_40r 56
729 243 45 27 >3

-+ C'FCY‘_'; TF"H f (—

13828 8072 256(:
729 81 97 >3

= ('IT}%N; ( — — — ==
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o000
i 000
Evolution of the PDF :
e RG invariance of DIS cross section implies
evolution equation for PDF for ¢—1:
d - .- - 1 (Tbns( g!? M)
Dns ) = 2_,\}’_,@ ) @ ns 1l T e (O ;/-q
T O () = %) 66 ) + Mamplan) [ e/ T
ldz endjy (1S E
= [ SR ey (S)
with:
plena)(z) = Zewnl9) L orea) 51— 5
(1—2)4 T
N ,}L

— has been used to derive 3-loop coefficient of y/
[Moch, Vermaseren, Vogt (2004)]



Evolution of the PDF

e Endpoint behavior can be parameterized as

(&)l = Nug) (1= 09 [14 01 = )]

where: '
' t!
/ runnlng exponen

eVE b(10) r(l + b(/JO))
AP T(1 1 bljig)

O(pis) = (o) 4 2ar(fiy. f10)

o Will use this to perform final convolutions
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Results

e Exact all-orders momentum-space formula:

(2) —2ar (fh,4i ) _
@) = X Iov@ e (%) exp [4S g 1) — 2 (i 1)

h

% e 1 (e, )
mw@lwﬂﬂ(m;+%”)ﬁﬂ/@ﬂw}4fﬂ

No integrals over Landau poles!

Physical scales p,,~ Q and p, ~ QV1-x cleanly
separated from factorization scale
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Results

e Performing final convolution integral yields
the K-factor:

‘ | [ O? —2ap (pp pti)
Kps(Q*, 2) = |Cy(Q?, up,)|? (—2) exp [4S (pin, fti) — 20, (fin, f4:)]

l’h

N @A —a)] o\ eI 40,
X exp [2a.0 (1, jiy)] j(ln 112 \\_Fd”” ui) I'(140b, + nj
\ ' q

(M,/Q)2" M,?

Explicit dependence on physical scales Q and M,

Factor (1-x)" is source of huge K-factor if p=>p.
(i.e., n<0)
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Results

e Analogous result obtained for Drell-Yan:

N —2ar (pp )
- y S ~
Koy (s, 7) = [Cv(=s, pin)|? (F) exp [4S (fn, f4:) — 20y (Jn, 1))
'h
@72'}"E"?7 1—*(2 ‘l_ bq + b(j)

< exp [ i 1)) (1= 7)oy (12

i o b
N \

(M, /s )21 M,

(2 + by + by + 2n)

e Straightforward to expand these results order
by order in RG-resummed perturbation theory
(known to NNLO = N3LL)
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Connection with conventional
approach

e Recall conventional formula (moment space):

ON(Q% pif) = 90(Q%, piy) exp [GN(Q?, )]

; r N-1_ 4
GN(Q7 pp) = / e
Jo -

(1—2)Q? 12
X |:/ —_— Aq ((’..l:'_S (1{)) —+ B(_-j (a-;'_S(Q-v 1 — Z))
F

12
4%

e Work out how g, A , and B are related to
objects in SCET (anomalous dimensions and
Wilson coefficients)
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Connection with conventional
approach

e Find (with V = d/dInu?):

Aq (CJ:’S ) — rcusp (Oﬁ S)
_ ~ . 1
FEVT(1 4 V) Byfas) =77 (a0) + V InF(0, 1) - [V r(v) - g] Coneplct)

e B, (as well as g,) not related to simple field-
theoretic objects in EFT, but to complicated
combinations of anomalous dimensions and

matching coefficients
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Connection with conventional
approach

e |t has been claimed that resummation in
X-space is plagued by strong factorial growth
of expansion coefficients not related to IR
renormalons [Catani, Mangano, Nason, Trentadue (1996)]

e Leads to “unphysical” power corrections
~ (AN/Q) withy=1.44/0.72 for Drell-Yan in

MS / DIS scheme, and vy = 0.16 for heavy-
quark production in gluon-gluon fusion

42



Connection with conventional
approach

e In our approach this problem has been
overcome!

e Indeed, perturbative convergence is better in
X-space than in N-space (see below)

e Physical IR renormalon poles (unavoidable)
arise in matching conditions only and are
commensurate with power corrections from
higher-dimensional operators in SCET:

e Cy(Q,u) — (NQ)? at hard scale
e j(L,y) — (NM,)? atjet scale
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Connection with conventional
approach

e Absence of unphysical power corrections
follows from very existence of effective theory
Difference with Catani et al. is that we fix the

intermediate scale p.~M, at the end, after all
integrals are performed

Also, their LL approximation does not correspond
to any consistent truncation in EFT approach

RG-impr. PT  Log. Approx.  Accuracy ~ a”LF Tewsp 7,7 Cyv, j
— LL n+1<k<2n(a7l) | 1-loop tree-level tree-level
LO NLL n<k<2n (a?) | 2-loop  1-loop  tree-level
NLO NNLL n—1<k<2n (as) | 3-loop  2-loop 1-loop
NNLO NNNLL n—2<k<2n (a?) |4-loop  3-loop 2-loop
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Resummed vs. fixed-order PT |:

5 ) | 5
|
I
Il |
' p LS : ns AT gt
YRS, Sy ;o 4l PP, eaey)
/ :> |
1 4 & ' [ Al
Q =5GeV ;= Q = 30GeV
3 5 Y 3
4
=
2 e ! 2
—————— |
l ________T,___,-__.._,_.",_.__.___._._'._,'_'__."_'____._1 ] ey el e wetep S g gl vianchond ko v ioer bt e ety e
07 075 08 085 09 095 1 0.7 075 08 08 09 095 I
x x

Figure 5: Comparison between fixed-order (dashed) and resummed results (solid). The light-
gray curves are the LO result, dark gray NLO, black NNLO. For the resummed result, we set
fr = Q, ;i = Mx, iy = 5GeV and b(py) = 4. The fixed order result with @ = () is obtained
by setting i, = p; = @ in the resummed expression.
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Perturbative uncertainties :

3 3
55 /(5°, erx il
25 25
LO NNLO
2] 2
15! 1.5
07 08 0.9 ] 0.7 0.8 0.9 ] 0.7 0.8 0.9 1
i b T

Figure 7: Scale variation of the result for F3* at () = 30GeV. The light-gray band is obtained
by varying Mx /2 < u; < 2My, while the dark-gray band arises from varying the hard scale
Q/2 <y < 2Q. We set pup =30GeV and b(py) = 4.
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Resummation

4 F_;“/(quq v ()“”
! -
@'=5 GE\-’,’ @)
3 L ~ |
|
2|
| ; , ; : ]
07 075 08 085 09 095 1
i

/(S

qfqi()

Q = 30GeV

l!.b

In Xx- vs. N-space

0.7

0.8

0.75

0.85
T

0.9

0.95

1

Figure 8: Comparison between Mellin-inverted moment space results (dashed) and results
obtained in directly in x-space (solid).

NLO.

The light-gray curves are the LO result, dark gray
The black lines are NNLO results and are visually indistinguishable from the NLO

curves for Q = 30GeV. We set 1, = 1y = @ and b(py) = 4. For the intermediate scale, we

choose ji; = My in momentum space and j; = Q/v' N in moment space.
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Conclusions e

e Methods from effective field theory provide powerful,
efficient tools to study factorization, resummation,
and power corrections in many hard QCD processes

e Have resummed Sudakov logarithms directly in
momentum space by solving RGEs

e Easier to match with FOPT results for differential
cross sections away from threshold region
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Conclusions e

e \What else can SCET do for you?

e Will try to get more mileage out of resummation

e Possible to study power corrections systematically
(often messy)

e SCET approach to parton showers appears
promising!

e Understand miracles of N=4 SUSY Yang-Mills?

o ...7?

e More at LoopFest VI
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