Pythia and Vincia

P. Skands (Fermilab) with W. Giele, D. Kosower, S. Mrenna, M. Sandhoff, T. Sjöstrand, D. Wicke

Overview

The VINCIA code

 Matching with QCD Antennae
 Parton showers with error bars

• PYTHIA

- $-A p_T$ -ordered parton shower
- The underlying event and color
 - Color Annealing a toy model of color reconnections

Matching – the state of the art

See e.g. hep-ph/0507129

X=Anything (e.g. ttbar) **PS=Parton Shower**

Hard & Soft Marriage Desireable! Several different ceremonies:

1) Merging (correcting first jet in X+PS to X+jet matrix element)

- **PYTHIA**: many ee \rightarrow X + jet, pp \rightarrow (h,V) + jet and most top, EW & MSSM decays
- **HERWIG:** many ee \rightarrow X + jet (incl VV), DIS, pp \rightarrow (V,h) + jet, top decay

2) LO Matching (combining LO X, X+jet, X+2jets, ... with PS)

- SHERPA: "CKKW" matching for $e+e- \rightarrow n$ jets, $pp \rightarrow (V,VV) + jets$
- PATRIOT: Pre-prepared ME/PS matched samples (using MADGRAPH with PYTHIA, stored in MCFIO format) for (W, Z) + jets (≤ 4) , for Tevatron
- ARIADNE: Vetoed Shower matching (interface to MADGRAPH) for $e+e- \rightarrow n$ jets and pp \rightarrow W + jets (DIS underway)

3)<u>NLO Matching</u> (matching NLO matrix elements with PS)

- MC@NLO: NLO + HERWIG for: pp → (h,V,VV,QQ,II) + jets new: single top

[+ MCFM: NLO (no PS) for pp \rightarrow (V,h)+jets, VV,Vh, WBF, single top] [+ FEHiP: NNLO (no PS) for $pp \rightarrow h_{h \rightarrow \gamma \gamma}$ + jets]

New Approaches – Why Bother?

• MC@NLO:

- •Used to think it was impossible! Giant step towards precision QCD ©
- •But complicated \rightarrow tough to implement new processes \otimes
- "Only" gets first jet right (rest is PS) ⊗
- Hardwired to HERWIG ⊗

• CKKW & MLM:

- •Best approach when multiple hard jets important.
- Relatively straightforward (but still very time-consuming)
- Retains LO normalization ⊗
- Dependence on matching scale ⊗
- "CKKW@NLO": Nagy & Soper
- MC with SCET: Bauer & Schwartz ...

•Not easy to control theoretical error on exponentiated part (also goes for ARIADNE, HERWIG, PYTHIA, ...) 🛞

VINCIA – Basic Sketch

- Perturbative expansion for some observable J, $d\sigma = \sum_{m=0} d\sigma_m$; $d\sigma_m = d\Pi_m |M|^2 \delta(J - J(k_1, k_2, ..., k_m))$
- Assume
 - We calculate some Matrix Elements $d\sigma_0$, $d\sigma_1$, ... $d\sigma_n$ (w or w/o loops)
 - And we have some approximation $d\sigma_{n+1} \sim T_{n \rightarrow n+1} d\sigma_n$ (~ parton shower)
- A 'best guess' cross section for J is then:

 $d\sigma \sim d\sigma_0 + d\sigma_1 + \dots + d\sigma_n (1 + T_{n \rightarrow n+1} + T_{n \rightarrow n+1} T_{n+1 \rightarrow n+2} + \dots)$ $\Rightarrow d\sigma \sim d\sigma_0 + d\sigma_1 + \dots + d\sigma_n S_n \qquad ; S_n = 1 + T_{n \rightarrow n+1} S_{n+1}$

- The $T_{n \rightarrow n+1}$ have to at least contain the correct singularities (in order to correctly sum up all logarithmically enhanced terms), but they are otherwise arbitrary.
- Now reorder this series in a useful way ...

Reordering Example: "H" \rightarrow gluons

• Assume we know $H \rightarrow gg$ and $H \rightarrow ggg$. Then reorder:

Use
$$1=S_n-T_{n \rightarrow n+1}S_{n+1}$$

- $d\sigma \sim d\sigma_{gg} + d\sigma_{ggg} S_{ggg}$ $= S_{gg}^{*} d\sigma_{gg} + S_{ggg} (d\sigma_{ggg} - T_{gg \rightarrow ggg} d\sigma_{gg})$ $= S_{gg}^{*} d\sigma_{gg} + S_{ggg} d\chi_{ggg}$ (generalises to n gluons)
- I.e shower off gg and subtracted ggg matrix element

Double counting avoided since singularities (shower) subtracted in $d\chi_{ggg}$.

• The shower kernels, T_{gg}, are precisely the singular subtraction terms used in HO perturbative calculations. As a <u>basis</u> we use Gehrman-Glover antennae:

Gehrmann-De Ridder, Gehrmann, Glover PLB612(2005)49

Parton Showers: the basics

Essentially: a simple approximation \rightarrow infinite perturbative orders

• Today, basically 2 (dual) approaches:

- Parton Showers (1 \rightarrow 2, e.g. HERWIG, PYTHIA)
- and Dipole Showers ($2 \rightarrow 3$, e.g. ARIADNE, VINCIA)

- "Evolution" in X = measure of hardness (p^2 , p_T^2 , ...)

Sudakov Form Factor = 'nobranching' probability

- z: energy-sharing
- n partons \rightarrow n+1. Cut off at some low scale \rightarrow natural match to hadronisation models

-Formally correct in collinear limit $p_{T(i)} \ll p_{T(i-1)}$, but approximate for hard emissions \rightarrow need matching.

The VINCIA code Virtual Numerical Collider with Interfering Antennae

- C++ code running: <u>gluon cascade</u>
- Dipole shower with 4 different ordering variables:

 $\begin{array}{ll} R^{I}(m_{12},m_{23}) & = 4 \ s_{12}s_{23}/s \\ & = p^{2}_{T;ARIADNE} \end{array}$

$$R^{II}(m_{12},m_{23}) = 2 \min(s_{12},s_{23}) \\ \sim m^2_{PYTHIA}$$

$$R^{III}(m_{12,}m_{23}) = 27 s_{12}s_{23}s_{31}/s^2$$

~ $p^2_{T;PYTHIA}$

Illustration with quarks,

sorry

 $R^{IV}(m_{12}, m_{23}) = 2 \min(s_{12}, \min(s_{23}, s_{31}))$

The VINCIA code Virtual Numerical Collider with Interfering Antennae

• For each evolution variable:

• an infinite family of antenna functions, all with correct collinear and soft behaviour:

• Using rescaled invariants:

$$y_{ij} = s_{ij} = s$$

•Our antenna function (a.k.a. radiation function, a.k.a. subtraction function) is:

Illustration
with quarks,
sorry
$$\hat{s}$$

 q^*
 q^*
 $|A(y_R; z)|^2$
 3

Х

m:n = 0

• Changes to Gehrman-Glover:

− → ordinary DGLAP limit

$$\lim_{y_{ar}\to 0} \left(a(y_{a-1,a}; y_{ar}) + a(y_{ar}; y_{rb}) \right) = \frac{1}{y_{ar}^C} P_{g \to gg}(z)$$

V12V23

 → First parton shower with systematic possibility for variation (+ note: variation absorbed by matching!)

 $C_{mn} y_{12}^n y_{23}^m$

The VINCIA code Virtual Numerical Collider with Interfering Antennae

• Sudakov Factor contains integral over PS:

$$\Delta_{13}(Q_R) = \exp\left(-\frac{2g^2 N_c}{\hat{s}_{13}} \int d\operatorname{PS}_R(p_1; p_2; p_3) \Theta\left(s_{123}R(y_{12}; y_{23}) - Q_R^2\right) a(y_{12}; y_{23})\right)$$

• Compact analytical solutions for types I and II (here without C_{mn} pieces)

$$\begin{split} D_{ab}^{(I)} &= \frac{32}{9} + \frac{4}{9}w_{-}(2w_{+}^{2} - w_{+} - 16) + \frac{1}{6}(w_{+} - w_{-})(1 + 8w_{+}w_{-}) \qquad ; \ \mathbf{w}_{\S} = \frac{1}{2}\mathbf{i}\,\mathbf{1}\,\$ \,\,\mathbf{P}\,\overline{\mathbf{1}_{\mathsf{I}}\,\,\mathsf{R}}^{\pounds} \\ &+ \left(\frac{11}{6} + w_{+}w_{-}\right)\log\left(\frac{w_{-}}{w_{+}}\right) + \frac{1}{2}\log^{2}(w_{-}) - \frac{1}{2}\log^{2}(w_{+}) + \operatorname{Li}_{2}(w_{-}) - \operatorname{Li}_{2}(w_{+}) \\ \overline{D_{ab}^{(II)}} &= \log^{2}(w) - \log(w)\log(1 - w) + \frac{1}{6}(1 - w)(2w^{2} - w + 11)\log\left(\frac{w}{1 - w}\right) \qquad ; \ \mathbf{w} = \frac{1}{2}\mathsf{R} \\ &+ \operatorname{Li}_{2}(w) - \operatorname{Li}_{2}(1 - w) + \frac{1}{36}(1 - 2w)(16w^{2} + 2w + 61) + \frac{1}{6}(1 - 2w)^{3} \end{split}$$

Types III and IV solved numerically (+ num. options for I and II as well)
 →Splines, so only need to evaluate once → fast.

• Successive branchings found with Metropolis algorithm according to 2D ordered branching probability: $P(y_{12}, y_{23}) = a(y_{12}, y_{23}) \Delta(y_R(y_{12}, y_{23}); 1)$

VINCIA – First Branching

- Starting scale Q = 20 GeV
- Stopping scale Q_{had} = 1 GeV
- ~ 1st order expansion in perturbation theory
- Axes: $y_{ab} = m_{ab}^2 / m_{dipole}^2$

Outlook – VINCIA

- Construction of VINCIA shower MC
 - gluon shower MC

Giele, Kosower, PS ; writeup in progress...

- based on LO done!
- based on NLO 'trivial' so far \rightarrow total **width** meaningful. Remains to demonstrate technique for σ
- Can vary both Sudakov ordering and radiation function → systematic exploration of uncertainty
- Can do matching to improve uncertainty (no δ_{sep} dependence)
- Number of hard legs can be as many as you can calculate
- Computations so far uncomplicated
- Hadron collider shower MC
 - Including initial-state radiation ...
 - Including quarks ...
- Higher orders: NNLO, NLL ?

Overview

The VINCIA code

 Matching with QCD Antennae
 Parton showers with error bars

• PYTHIA

- $-A p_T$ -ordered parton shower
- The underlying event and color
 - Color Annealing a toy model of color reconnections

New Parton Shower – Why Bother?

Pros and cons of existing showers, e.g.:

- In PYTHIA, ME merging is easy, and emissions are ordered in some measure of (Lorentz invariant) hardness, but angular ordering has to be imposed by hand, and kinematics are somewhat messy. Matching not straightforward.
- HERWIG has inherent angular ordering, but also has the 'dead zone' problem, is not Lorentz invariant and has somewhat messy kinematics. Matching not straightforward.
- ARIADNE has inherent angular ordering, simple kinematics, and is ordered in a (Lorentz Invariant) measure of hardness, matching is straightfroward, but is primarily a tool for e⁺e⁻, and g→qq is 'artificial' in dipole formalism.
- These all describe LEP data well, but none are perfect (ARIADNE probably slightly the better)

Try combining the virtues of each of these while avoiding the vices?

p_T-ordered showers

Merged with X + 1 jet Matrix Elements (by reweighting) for: h/ γ /Z/W production, and for most EW, top, and MSSM decays!

Exclusive *kinematics* constructed inside dipoles based on Q^2 and z, assuming yet unbranched partons on-shell

Iterative application of Sudakov factors...

 \Rightarrow One combined sequence $p_{\perp \max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp \min}$

Sjöstrand & PS : Eur.Phys.J.C39(2005)129; Plehn, Rainwater & PS: hep-ph/0510144 & hep-ph/0511306

Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck) based on ALEPH 1992+93 data:

Testing the ISR algorithm

'Interleaved evolution' with Multiple Parton Interactions

The new picture: start at the most inclusive level, $2 \rightarrow 2$. Add exclusivity progressively by evolving *everything* downwards.

Motivation

Min-bias collisions at the Tevatron

- Well described by Rick Field's "Tune A" of PYTHIA
- Theoretical framework is from 1987. I made some improvements.
- Wanted to use "Tune A" as initial reference target
- But it kept on being different ...

Multiplicity distribution OK (plus a lot of other things), but $< p_T > (N_{ch})$ never came out right \rightarrow something must be wrong or missing?

Underlying Event and Color

- Multiplicity in string fragmentation ~ log(m_{string})
 - More strings \rightarrow more hadrons, but <u>average</u> p_T stays same
 - Flat $< p_T > (N_{ch})$ spectrum ~ 'uncorrellated' underlying event
- But if MPI interactions correlated in colour
 - Sjöstrand & v Zijl : Phys.Rev.D36:2019,1987 → "Old" Pythia model
 - each scattering does not produce an independent string,
 - average $p_T \rightarrow$ not flat
- Central point: multiplicity vs p_T correllation probes color correllations!
- What's so special about Tune A?
 - It and all other realistic 'tunes' made turn out to have to go to the very most extreme end of the parameter range, with 100% color correllation in final state.

Sjöstrand, Khoze, Phys.Rev.Lett.72(1994)28 & Z. Phys.C62(1994)281 + more ...

Color Reconnections

- Searched for at LEP OPAL, Phys.Lett.B453(1999)153 & OPAL, hep-ex0508062
 - Major source of W mass uncertainty
 - Most aggressive scenarios excluded
 - But effect still largely uncertain ~ 10%

- Prompted by CDF data and Rick Field's 'Tune A' to reconsider. What do we know?
 - More prominent in hadron-hadron collisions?
 - What is $< p_T > (N_{ch})$ telling us?
 - Top mass?
 - Implications for LHC?

• Problem: existing models only for $e^+e^- \rightarrow WW$

Color Annealing

- Toy model of (non-perturbative) color reconnections, applicable to any final state
 - At hadronisation time, each string piece has a probability to interact with the vacuum / other strings:

 $P_{reconnect} = 1 - (1^{-3})^{n_{int}}$

³: Strength parameter n_{int}: Number of parton-parton interactions

- String formation for interacting string pieces determined by annealing-like minimization of 'Lambda measure' (~string length~log(m)~N)
- \rightarrow good enough for order-of-magnitude

Sandhoff + PS, in Les Houches '05 SMH Proceedings, hep-ph/0604120

First Results

- Improved Description of Min-Bias
- Effect <u>Still</u> largely uncertain
- Worthwhile to look at top etc

• Investigating effect on DØ top mass with D. Wicke (U. Wuppertal)

Conclusions – Underlying Event

- Ever-present yet poorly understood part of QCD. How 'good' are current physical models/parametrizations?
- What's the relation between min-bias and underlying events? Are there color reconnections? Are they more prolific in hadron collisions? Are there other collective phenomena? Does this influence top mass etc?
- Physics Impact
 - Calibration (e.g. 3.6M min-bias events → 1% calibration of CMS ECAL)
 - Lepton isolation, photon isolation
 - Jet energy scale
 - Tails \rightarrow Fakes! (Enormous rate) x (small probability) = still large
 - Min-bias → underlying event
- New generation of models address more detailed questions: correllations, baryon flow, ... more?
- Energy Extrapolation largest uncertainty for LHC!
 - RHIC pp collisions vital? → energy scaling
 - Can be measured in situ, but more interesting to predict than postdict

Collider Energy Scales

26

The Monte Carlo method

Want to generate events in as much detail as Mother Nature \implies get average *and* fluctutations right \implies make random choices, \sim as in nature

 $\sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process}} \rightarrow \text{final state}$ (appropriately summed & integrated over non-distinguished final states) where $\mathcal{P}_{\text{tot}} = \mathcal{P}_{\text{res}} \mathcal{P}_{\text{ISR}} \mathcal{P}_{\text{FSR}} \mathcal{P}_{\text{MI}} \mathcal{P}_{\text{remnants}} \mathcal{P}_{\text{hadronization}} \mathcal{P}_{\text{decays}}$ with $\mathcal{P}_i = \prod_j \mathcal{P}_{ij} = \prod_j \prod_k \mathcal{P}_{ijk} = \dots$ in its turn

 \implies divide and conquer

an event with *n* particles involves O(10n) random choices, (flavour, mass, momentum, spin, production vertex, lifetime, ...) LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages) \implies several thousand choices (of O(100) different kinds) from T. Sjöstrand

High-p_T phenomenology

<u>The signal</u>

e.g. talk by Lillie

- Large cross sections for coloured BSM resonances
- E.g. monojet signature for ED relies on hard QCD radiation
- Cascade decays → <u>Many-body</u> final states
- Backgrounds
 - <u>Also</u> large cross sections for top, nZ/W, other resonances (?), ... _
 - With jets
- <u>Theory:</u>
 - Fixed-order perturbation theory
 - Asymptotic freedom → improved convergence at high p_T
 - Phase space increases

proton - (anti)proton cross sections Resonances & Hard Jets: 10⁹ SM and BSM Resonance Production, Hard Jet Tail (esp. ISR), Successive (cascade) resonance decays 10^{4} 10^{4} cm² 103 10^{3} 1033 > vs/20) 10^{2} 10^{2} (qu) 10^{1} 10 d, ь 10 10° $\sigma_{tet}(E_{\tau}^{jet} > 100 \text{ GeV})$ Svents/ 10 10 10-2 10-2 1 pb 10-3 $\sigma_{\rm ext}(E_{\rm T}^{\rm jet} > \sqrt{s/4})$ 10 104 (M., = 150 GeV) 10-5 1 fb 10-6 107 10 01 √s (TeV)

Problem 1: Many legs is hard → E.g. successive factorization of res. decays Problem 2: Many loops is hard → Get a personal physician for Frank Problem 3: Only good for inclusive observables → Match to resummation

Extra Jets 0

- In signal
 - = extra noise / confusion
 - Combinatorics, vetos
- In backgrounds
 - Irreducible backgrounds
 - Some fraction → fakes!
- Heavy flavour
- Jet energy scale
 - Jet broadening
- Underlying activity
 - Theory
 - Fixed Order with explicit jets
 - Parton Showers / Resumma
 - Models of Underlying Event

Medium-p_T phenomenology

Minijets & Jet Structure:

Semi-hard separate brems jets (esp. ISR), jet broadening (FSR), $q \rightarrow cc/bb$, multiple perturbative $2 \rightarrow 2$ interactions (underlying event), ...?

LHC - sps1a - m~600 GeV				Plehn, Rainwater, PS (2005)				
FIXED ORDER pQCD	$\sigma_{\rm tot}[{\rm pb}]$	$ ilde{g} ilde{g}$	$\tilde{u}_L \tilde{g}$	$\tilde{u}_L \tilde{u}_L^*$	$\tilde{u}_L \tilde{u}_L$	TT		
$p_{T,j} > 100 \text{ GeV}$	σ_{0j}	4.83	5.65	0.286	0.502	1.30		
inclusive X + 1 "jet"	$\rightarrow \sigma_{1j}$	2.89	2.74	0.136	0.145	0.73		
inclusive X + 2 "jets " ⁻	$\rightarrow \sigma_{2j}$	1.09	0.85	0.049	0.039	0.26		
	1a, Suey-MadGraph 3ythia: p ² (power) p ² (wimpy) G ² (wimpy) G ² (tune A)			→ggJ) 50 GeV 5, ΔRij>0.4 - s=1.75				

Problem 1: Need to get both soft and hard emissions "right" \rightarrow ME/PS Matching Problem 2: Underlying Event not well understood \rightarrow what does it look like at LHC?

Low-p_T phenomenology

Measurements at LEP ->

- Fragmentation models (HERWIG, PYTHIA) "tuned"
- Strangeness and baryon production rates well measured
- Colour reconnections ruled out in WW (to ~ 10%)

Measurements at hadron colliders

- Different vacuum, colour in initial state → "colour promiscuity"?
- Underlying Event and Beam Remnants
- Intrinsic k_T
- Lots of min-bias. Fragmentation tails → fakes!

Example Problem: What is the non-perturbative uncertainty on the top mass?

Non-Perturbative:

hadronisation, beam remnants, fragmentation functions, intrinsic k_T, colour reconnections, pion/proton ratios, kaon/pion ratios, Bose-Einstein, diffraction, elastic, ...

What is the Difference?

CKKW (& friends) in a nutshell:

- 1. Generate a n-jet Final State from n-jet (singular) ME
- 2. Construct a "fake" PS history
- 3. Apply Sudakov weights on each "line" in history \rightarrow from <u>inclusive</u> n-jet ME to <u>exclusive</u> n-jet (i.e. probability that n-jet **remains** n-jet above cutoff) \rightarrow gets rid of double counting when mixed with other ME's.
- 4. Apply PS with no emissions above cutoff

VINCIA in a nutshell:

- 1. Subtract PS singularities from n-jet ME (antenna subtraction)
- 2. Generate a n-jet Final State from the subtracted (finite) ME.
- 3. Apply PS with same antenna function \rightarrow Leading Logs resummed
- + full NLO: divergent part already there \rightarrow just include extra finite contribution in $d\sigma = d\sigma_0^{(0)} + d\sigma_1^{(0)} + sing[d\sigma_0^{(1)}] + F^{(1)} + ...$
- + NNLO/NLL possible? Gehrmann-De Ridder, Gehrmann, Glover JHEP09(2005)056

+ Easy to vary shower assumption

→ first parton shower with 'error band'! (novelty in itself)

PYTHIA Process Library

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess
Hard QCD processes:	$36 f_i \gamma \rightarrow f_k W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	210 $f_i \overline{f}_j \rightarrow \tilde{\ell}_L \tilde{\nu}_\ell^* +$	250 $f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_3$
11 $f_i f_j \rightarrow f_i f_j$	69 $\gamma \gamma \rightarrow W^+W^-$	141 $f_i \overline{f}_i \rightarrow \gamma / Z^0 / Z'^0$	297 $f_i \overline{f}_j \rightarrow H^{\pm} h^0$	$146 e\gamma \rightarrow e^*$	211 $f_i \overline{f}_i \rightarrow \tilde{\tau}_1 \tilde{\nu}_{\tau}^* +$	$251 f_i g \rightarrow \tilde{q}_i R \tilde{\chi}_3$
12 $f_i \overline{f}_i \rightarrow f_k \overline{f}_k$	$70 \gamma W^{\pm} \rightarrow Z^{0}W^{\pm}$	142 $f_i \overline{f}_i \to W'^+$	298 $f_i \overline{f}_i \rightarrow H^{\pm} H^0$	$147 dg \rightarrow d^*$	212 $f_i \overline{f}_i \rightarrow \tilde{\tau}_2 \tilde{\nu}_{\tau}^* +$	252 $f_{ig} \rightarrow \tilde{q}_{iL}\tilde{\chi}_4$
$13 f_i \overline{f}_i \rightarrow gg$	Prompt photons:	144 $f_i \overline{f}_i \to R$	299 $f_i \overline{f}_i \rightarrow A^0 h^0$	$148 ug \rightarrow u^*$	213 $f_i \overline{f}_i \rightarrow \tilde{\nu}_\ell \tilde{\nu}_\ell^*$	253 $f_{ig} \rightarrow \tilde{q}_{iR}\tilde{\chi}_4$
$28 f_i g \rightarrow f_i g$	14 $f_i \overline{f}_i \rightarrow g\gamma$	Heavy SM Higgs:	$300 f_i \overline{f}_i \rightarrow A^0 H^0$	167 $q_i q_j \to d^* q_k$	214 $f_i \overline{f}_i \rightarrow \tilde{\nu}_\tau \tilde{\nu}_\tau^*$	$254 f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_{1}^{\pm}$
53 gg $\rightarrow f_k \overline{f}_k$	18 $f_i \overline{f}_i \rightarrow \gamma \gamma$	$5 Z^0 Z^0 \rightarrow h^0$	$301 f_i \overline{f}_i \rightarrow H^+ H^-$	168 $q_i q_j \rightarrow u^* q_k$	216 $f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$	256 $f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
$68 gg \rightarrow gg$	29 $f_i g \rightarrow f_i \gamma$	$8 W^+W^- \rightarrow h^0$	Leptoquarks:	169 $q_i \overline{q}_i \rightarrow e^{\pm} e^{*\mp}$	217 $f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$	$258 f_i g \rightarrow \tilde{q}_{iL} \tilde{g}$
Soft QCD processes:	114 gg $\rightarrow \gamma \gamma$	71 $Z_{L}^{0}Z_{L}^{0} \rightarrow Z_{L}^{0}Z_{L}^{0}$	145 $q_i \ell_i \rightarrow L_0$	165 $f_i \overline{f}_i (\to \gamma^* / Z^0) \to f_k \overline{f}_k$	218 $f_1 \overline{f_1} \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$ 218 $f_2 \overline{f_2} \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$	$259 f_i g \to \tilde{q}_i R \tilde{g}$
91 elastic scattering	115 $gg \rightarrow g\gamma$	72 $Z_L^{\tilde{0}} Z_L^{\tilde{0}} \rightarrow W_L^+ W_L^-$	162 $qg \rightarrow \ell L_0$	166 $f_i \overline{f}_j (\to W^{\pm}) \to f_k \overline{f}_l$	210 $f_i \overline{f}_i \rightarrow \tilde{\chi}_i \tilde{\chi}_i$ 219 $f_i \overline{f}_i \rightarrow \tilde{\chi}_i \tilde{\chi}_i$	261 $f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_1^*$
92 single diffraction (XB)	Deeply Inel. Scatt.:	73 $Z_L^{\tilde{0}} W_L^{\pm} \rightarrow Z_L^{\tilde{0}} W_L^{\pm}$	163 $gg \rightarrow Lo\overline{L}o$	Extra Dimensions:	220 $f_1 \overline{f_1} \rightarrow \tilde{\chi}_4 \chi_4$ 220 $f_2 \overline{f_2} \rightarrow \tilde{\chi}_4 \tilde{\chi}_2$	$262 f_i \overline{f}_i \to \tilde{t}_2 \tilde{t}_2^*$
93 single diffraction (AX)	10 $f_i f_j \rightarrow f_k f_l$	76 $\tilde{W}_{L}^{+}\tilde{W}_{L}^{-} \rightarrow \tilde{Z}_{L}^{0}Z_{L}^{0}$	164 $q_{i}\overline{q} \rightarrow L_{0}\overline{L_{0}}$	$391 f\overline{f} \rightarrow G^*$	$220 f_i f_i \to \chi_1 \chi_2$ $221 f_i \overline{f_i} \to \tilde{\chi_i} \tilde{\chi_i}$	263 $f_i \overline{f}_i \rightarrow \tilde{t}_1 \tilde{t}_2^* +$
94 double diffraction	99 $\gamma^* q \rightarrow q$	77 $W_{L}^{\pm}W_{L}^{\pm} \rightarrow W_{L}^{\pm}W_{L}^{\pm}$	Technicolor:	$392 gg \rightarrow G^*$	$221 I_i I_i \to \chi_1 \chi_3$ $222 f_i \overline{f_i} \to \tilde{\chi_1} \tilde{\chi_3}$	$264 gg \rightarrow \tilde{t}_1 \tilde{t}_1^*$
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	149 $gg \rightarrow p_{tc}$	$393 q\overline{q} \rightarrow gG^*$	$222 1i1i \to \chi_1\chi_4$	$265 gg \rightarrow \tilde{t}_2 \tilde{t}_2^*$
Open heavy flavour:	33 $f_i \gamma \rightarrow f_i g$	151 $f_i \overline{f}_i \rightarrow H^0$	191 $f_i \overline{f}_i \rightarrow \rho_{t_0}^0$	$394 qg \rightarrow qG^*$	$223 1_i 1_i \to \chi_2 \chi_3$	271 $f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}$
(also fourth generation)	$34 f_i \gamma \to f_i \gamma$	$152 \text{ gg} \rightarrow \text{H}^0$	192 $f_i \overline{f}_i \rightarrow a^+$	$395 gg \rightarrow gG^*$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272 $f_i f_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}$
81 $f_i \overline{f}_i \to Q_k \overline{Q}_k$	54 $g\gamma \rightarrow f_k \overline{f}_k$	153 $\gamma \gamma \rightarrow H^0$	193 $f_i \overline{f}_i \rightarrow \omega_{i}^0$	Left–right symmetry:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273 $f_i f_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jR} +$
82 $gg \rightarrow Q_k \overline{Q}_k$	58 $\gamma \gamma \rightarrow f_k \overline{f}_k$	171 $f_i \overline{f}_i \rightarrow Z^0 H^0$	194 $f_i \overline{f}_i \rightarrow f_i \overline{f}_i$	$341 \ell_i \ell_j \to \mathcal{H}_L^{\pm\pm}$	$\begin{array}{ccc} 220 & \mathrm{I}_i\mathrm{I}_i \to \chi_1^-\chi_1^+ \\ 227 & \mathrm{f}_1^- & \mathrm{f}_2^+ & \mathrm{f}_1^+ \end{array}$	274 $f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_{jL}^*$
83 $q_i f_j \rightarrow Q_k f_l$	131 $f_i \gamma_T^* \to f_i g$	172 $f_i \overline{f}_i \to W^{\pm} H^0$	195 $f_i \overline{f}_i \longrightarrow f_k \overline{f}_k$	$342 \ell_i \ell_j \to \mathrm{H}_R^{\pm\pm}$	$227 f_i f_i \to \chi_2^+ \chi_2^+$	275 $f_i \overline{f}_j \rightarrow \tilde{q}_{iR} \tilde{q}_{jR}^*$
84 $g\gamma \rightarrow Q_k \overline{Q}_k$	$132 f_i \gamma_L^* \rightarrow f_i g$	173 $f_i f_i \rightarrow f_i f_i H^0$	$\begin{array}{cccc} 155 & I_{k}I_{j} & F_{k}I_{l} \\ 361 & f_{k}\overline{f_{k}} \longrightarrow W^{+}W^{-} \end{array}$	343 $\ell_i^{\pm} \gamma \rightarrow H_L^{\pm\pm} e^{\mp}$	228 $f_i f_i \rightarrow \chi_1^+ \chi_2^+$	276 $f_i \overline{f}_j \rightarrow \tilde{q}_{iL} \tilde{q}_j^* R +$
85 $\gamma \gamma \rightarrow F_k \overline{F}_k$	133 $f_i \gamma^*_T \rightarrow f_i \gamma$	174 $f_i f_i \rightarrow f_k f_l H^0$	$362 f_i \overline{f}_i \rightarrow W_L^{\pm} W_L^{\pm}$	$344 \ell_i^{\pm} \gamma \to \mathbf{H}_R^{\pm \pm} \mathbf{e}^{\mp}$	229 $f_i f_j \rightarrow \chi_1 \chi_1^{\perp}$	277 $f_i \overline{f}_i \rightarrow \tilde{q}_{jL} \tilde{q}_{jL}^*$
Closed heavy flavour:	$134 f_i \gamma_L^* \to f_i \gamma$	181 $gg \rightarrow Q_k \overline{Q}_k H^0$	$362 f_i f_i \rightarrow \pi^+ \pi^-$	345 $\ell_i^{\pm} \gamma \rightarrow \mathrm{H}_L^{\pm \pm} \mu^{\mp}$	230 $f_i f_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_1^{\pm}$	278 $f_i \overline{f}_i \rightarrow \tilde{q}_j R \tilde{q}_j^* R$
86 $gg \rightarrow J/\psi g$	135 $g\gamma_T^* \rightarrow f_i \overline{f}_i$	182 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k H^0$	$364 \text{f.}\overline{f} \rightarrow \alpha \pi^0$	346 $\ell_i^{\pm} \gamma \to \mathrm{H}_R^{\pm\pm} \mu_{-}^{\mp}$	$\begin{array}{ccc} 231 & \mathbf{f}_i \mathbf{f}_j \to \tilde{\chi}_3 \tilde{\chi}_1^{\pm} \\ & & & \\ \end{array}$	279 $gg \rightarrow \tilde{q}_{iL}\tilde{q}_{iL}^*$
87 $gg \rightarrow \chi_{0c}g$	$136 g\gamma_L^* \rightarrow f_i \overline{f}_i$	183 $f_i \overline{f}_i \rightarrow g H^0$	$304 I_i I_i \rightarrow \gamma \pi_{tc}$ $265 f_i \overline{f}_i \rightarrow \alpha {\pi'}^0$	347 $\ell_i^{\pm} \gamma \to \mathrm{H}_L^{\pm\pm} \tau^{\mp}$	232 $f_i f_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_1^{\perp}$	$280 gg \rightarrow \tilde{q}_{iR}\tilde{q}_{iR}^*$
88 $gg \rightarrow \chi_{1c}g$	137 $\gamma_T^* \gamma_T^* \rightarrow f_i \overline{f}_i$	$184 f_i g \rightarrow f_i H^0$	$303 I_i I_i \rightarrow \gamma \pi_{tc}$ $266 f \overline{f} \rightarrow 7^0 - 0$	$348 \ell_i^{\pm} \gamma \to \Pi_R^{\pm \pm} \tau^+$	233 $f_i f_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\perp}$	281 $bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iL}$
89 $gg \rightarrow \chi_{2c}g$	138 $\gamma_T^* \gamma_L^* \rightarrow f_i \overline{f}_i$	$185 \text{ gg} \rightarrow \text{gH}^0$	$1_i I_i \rightarrow \Sigma \pi_{tc}$	$349 f_i \underline{f}_i \to H_L^{++} H_L^{}$	$234 f_i f_j \to \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$	282 $bq_i \rightarrow \tilde{b}_2 \tilde{q}_{iR}$
$104 gg \to \chi_{0c}$	139 $\gamma_L^* \gamma_T^* \rightarrow f_i \overline{f}_i$	$156 f_i \overline{f}_i \rightarrow A^0$	$1_{i1_i} \rightarrow 2 \pi_{tc}$	$350 f_i f_i \to H_R^{++} H_R^{}$	235 $f_i f_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_2^\perp$	283 $bq_i \rightarrow \tilde{b}_1 \tilde{q}_{iR} +$
$105 gg \rightarrow \chi_{2c}$	140 $\gamma_L^* \gamma_L^* \rightarrow f_i \overline{f}_i$	$157 gg \rightarrow A^0$	$368 I_i I_i \rightarrow W^- \pi'_{tc}$	$351 f_i f_j \to f_k f_l H_{L_{\pm}}^{\pm\pm}$	236 $f_i f_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$	284 $b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_i^* L$
$106 \text{ gg} \rightarrow J/\psi\gamma$	80 $q_i \gamma \rightarrow q_k \pi^{\pm}$	158 $\gamma \gamma \rightarrow A^0$	370 $I_i I_j \rightarrow W_{\overline{L}} Z_{\overline{L}}$	$352 f_i f_j \to f_k f_l H_R^{\pm \pm}$	237 $f_i \underline{f}_i \rightarrow \tilde{g} \tilde{\chi}_1$	285 $b\overline{q}_i \rightarrow \tilde{b}_2 \tilde{q}_i^* R$
$107 g\gamma \rightarrow J/\psi g$	Light SM Higgs:	$176 f_i \overline{f}_i \rightarrow Z^0 A^0$	371 $I_i I_j \rightarrow W_L^- \pi_{tc}^-$	$353 f_i \underline{f}_i \to Z_R^0$	238 $f_i f_i \rightarrow \tilde{g} \tilde{\chi}_2$	286 $b\overline{q}_i \rightarrow \tilde{b}_1 \tilde{q}_i^* R^+$
$108 \gamma \gamma \to J/\psi \gamma$	$3 f_i \overline{f}_i \rightarrow h^0$	$177 f_i \overline{f}_j \rightarrow W^{\pm} A^0$	$372 f_i f_j \rightarrow \pi_{tc}^- Z_L^-$	$354 f_i f_j \to W_R^{\pm}$	239 $f_i \underline{f}_i \rightarrow \tilde{g} \tilde{\chi}_3$	287 $f_i \overline{f}_i \rightarrow \tilde{b}_1 \tilde{b}_1^*$
W/Z production:	$24 f_i \overline{f}_i \rightarrow Z^0 h^0$	178 $f_i f_j \rightarrow f_i f_j A^0$	$373 f_i f_j \rightarrow \pi_{tc}^{\pm} \pi_{tc}^{-}$	SUSY:	240 $f_i \overline{f}_i \to \tilde{g} \tilde{\chi}_4$	288 $f_i \overline{f}_i \rightarrow \tilde{b}_2 \tilde{b}_2^*$
$1 f_i \underline{f}_i \to \gamma^* / Z^0$	$26 f_i \overline{f}_j \rightarrow W^{\pm} h^0$	179 $f_i f_j \rightarrow f_k f_l A^0$	$374 f_i f_j \rightarrow \gamma \pi_{tc}^{\pm}$	$201 f_i \overline{f}_i \to \tilde{e}_L \tilde{e}_L^*$	241 $f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_1^{\pm}$	$289 gg \rightarrow \tilde{b}_1 \tilde{b}_1^*$
$2 f_i f_j \to W^{\pm}$	$32 f_i g \rightarrow f_i h^0$	186 $gg \rightarrow Q_k \overline{Q}_k A^0$	$375 f_i f_j \rightarrow Z^s \pi_{tc}^{\pm}$	$202 f_i \underline{f}_i \to \tilde{e}_R \tilde{e}_R^*$	242 $f_i \bar{f}_j \to \tilde{g} \tilde{\chi}_2^{\pm}$	$290 gg \rightarrow \tilde{b}_2 \tilde{b}_2^*$
22 $f_i \overline{f}_i \to Z^0 Z^0$	$102 gg \rightarrow h^0$	187 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k A^0$	$376 f_i f_j \rightarrow W^{\perp} \pi^0_{tc}$	203 $f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_R^* +$	243 $f_i \overline{f}_i \rightarrow \tilde{g}\tilde{g}$	200 $gg \rightarrow 5_2 5_2$ 291 $bb \rightarrow \tilde{b}_1 \tilde{b}_1$
23 $f_i \overline{f}_j \to Z^0 W^{\pm}$	$103 \gamma \gamma \rightarrow h^0$	188 $f_i \overline{f}_i \rightarrow g A^0$	$377 f_i f_j \to W^\perp \pi'_{tc}^0$	$204 f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_L^*$	$244 gg \rightarrow \tilde{g}\tilde{g}$	292 bb \rightarrow baba
$25 f_i \overline{f}_i \to W^+ W^-$	110 $f_i \overline{f}_i \rightarrow \gamma h^0$	$189 f_i g \to f_i A^0$	$381 \mathbf{q}_i \mathbf{q}_j \to \mathbf{q}_i \mathbf{q}_j$	$205 f_i \overline{f}_i \rightarrow \tilde{\mu}_R \tilde{\mu}_R^*$	246 $f_i g \rightarrow \tilde{q}_{iL} \tilde{\chi}_1$	293 bb $\rightarrow \tilde{b}_1 \tilde{b}_2$
15 $f_i \overline{f}_i \to g Z^0$	111 $f_i \overline{f}_i \rightarrow gh^0$	$190 gg \rightarrow gA^0$	$382 q_i \overline{q}_i \rightarrow q_k \overline{q}_k$	206 $f_i \overline{f}_i \rightarrow \tilde{\mu}_L \tilde{\mu}_R^* +$	247 $f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_1$	294 $hg \rightarrow \tilde{b}_1 \tilde{g}_2$
16 $f_i \overline{f}_j \to g W^{\pm}$	$112 f_i g \to f_i h^0$	Charged Higgs:	$383 q_i q_i \rightarrow gg$	207 $f_i \overline{f}_i \to \tilde{\tau}_1 \tilde{\tau}_1^*$	248 $f_i g \to \tilde{q}_{iL} \tilde{\chi}_2$	201 bg / blg 205 bg $\rightarrow \tilde{b}_{-}\tilde{a}$
$30 f_i g \to f_i Z^0$	$113 gg \rightarrow gh^0$	143 $f_i \overline{f}_j \to H^+$	584 $f_i g \rightarrow f_i g$	208 $f_i \overline{f}_i \rightarrow \tilde{\tau}_2 \tilde{\tau}_2^*$	249 $f_{ig} \to \tilde{q}_{iR}\tilde{\chi}_2$	$295 \text{bg} \rightarrow 02\text{g}$ $206 \text{bb} \rightarrow \tilde{b}_{*}\tilde{b}^{*+}$
$31 f_i g \to f_k W^{\pm}$	121 $gg \rightarrow Q_k \overline{Q}_k h^0$	$161 f_i g \to f_k H^+$	$385 gg \rightarrow q_k \overline{q}_k$	209 $f_i \overline{f}_i \rightarrow \tilde{\tau}_1 \tilde{\tau}_2^* +$		290 DD \rightarrow D1D ₂ +
19 $f_i \overline{f}_i \to \gamma Z^0$	122 $q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k h^0$	$401 gg \rightarrow tbH^+$	$300 gg \rightarrow gg$			
20 $f_i \overline{f}_j \rightarrow \gamma W^{\pm}$	123 $f_i f_j \rightarrow f_i f_j h^0$	$402 q\overline{q} \rightarrow \overline{t}bH^+$	$387 I_i I_i \rightarrow Q_k Q_k$			
$35 f_i \gamma \rightarrow f_i Z^0$	$124 f_i f_j \rightarrow f_k f_l h^0$		$388 gg \rightarrow Q_k Q_k$			