Linear Collider Detector

- Silicon Detector
 - Motivation
 - Simulation
 - Description
 - Status

LC Detector Requirements

- a) Two-jet mass resolution comparable to the natural widths of W and Z for an unambiguous identification of the final states.
- b) Excellent flavor-tagging efficiency and purity (for both b- and c-quarks, and hopefully also for s-quarks).
- c) Momentum resolution capable of reconstructing the recoilmass to di-muons in Higgs-strahlung with resolution better than beam-energy spread.
- d) Hermeticity (both crack-less and coverage to very forward angles) to precisely determine the missing momentum.
- e) Timing resolution capable of separating bunch-crossings to suppress overlapping of events.

Detector Response Simulation

- Flexible software framework to study performance as a function of R_{cal} , B, etc.
- Inclusion of beamline elements, masks,...
 - All backgrounds included (machine, physics,...)
- Better detector modelling:
 - Real geometries, support material, etc.
- Improved simulation of detector response
 - digitization, merged hits, "ghost" hits, eff's

SLAC Simulations Group: N. Graf, G. Bower,T. Behnke, R. Cassell, A. Johnson

Detector Response Simulation II

- Determine detector response as a function of basic parameters \rightarrow "slopes".
- Use SD as pivot point from which to extrapolate.
- Systematic understanding of the complete detector.
- Ab initio reconstruction:
 - Track finding & fitting, calorimeter cluster reconstruction from realistic detector hits.

10 April 2003

International Collaboration

- Both simulation environments can now model the other's detectors in Geant4.
- European and American efforts have converged on common MC data I/O format.
 - Allows swapping of detectors.
- Aiming for common reconstruction environment and output format.
 - Direct reconstruction comparison, code sharing!

SD (Silicon Detector)

- Conceived as a high performance detector for NLC
- Reasonably uncompromised performance
 But
- Constrained & Rational cost
- Accept the notion that excellent energy flow calorimetry is required, and explore optimization of a Tungsten-Silicon EMCal and the implications for the detector architecture...

10 April 2003

Architecture arguments

- Silicon is expensive, so limit area by limiting radius
- Get back BR² by pushing B (~5T)
 - This argument may be weak, considering quantitative cost trade-offs. (see plots)
- Maintain tracking resolution by using silicon strips
- Buy safety margin for VXD with the 5T B-field.
- Keep (?) track finding by using 5 VXD space points to determine track - tracker measures sagitta.

SD Configuration

Scale of EMCal & Vertex Detector

Vertex Detectors

- Design CCD's for
 - Optimal shape ~2 x 12 cm
 - Multiple (~20) ReadOut nodes for fast readout
 - Thin -≤ 100 μ
 - Improved radiation hardness
 - Low power
- Readout ASIC
 - No connectors, cables, output to F.O.
 - High reliability
 - Increased RO speed from SLD VXD3
 - Lower power than SLD VXD3

Vertex Detectors, continued

- Mechanical
 - Eliminate CCD supports, "stretch" Si.
 - Very thin beampipes??
 - Cooling
- Simulation
 - Quantify/justify needs
- SLD VXD3 has been removed from SLD for damage analysis of CCD's.

Silicon Tracker

- SLC/SLD Prejudice: Silicon is robust against machine mishaps; wires & gas are not.
- SD as a system should have superb track finding:
 - 5 layers of higly pixellated CCD's
 - 5 layers of Si strips, outer layer measures 2 coordinates
 - EMCal provides extra tracking for Vee finding ~1mm resolution!
- Mechanical:
 - Low mass C-Fiber support structure
 - Chirped Interferometry Geodesy (Oxford System) Atlas has developed a beautiful chirped interferometric alignment system - a full geodetic grid tieing together the elements of their tracker. Can such a system reduce requirements on the space frame precision and stability reducing its mass and cost?

Tracker, continued

- Silicon Development
 - Build on GLAST development,
 - Utilize GLAST detector style w bond pads on both ends, and
 - Develop special ladder end detector w bump bond array
 - Reduce mass, complexity at ends
 - Tracker Electronics Architecture:
 - Plan is to string 10 cm square detectors to barrel half lengths and readout from ends.
 - Design "end" detectors to route strips to rectangular grid for bump bonding to read out chip (ROC).
 - ROC is ASIC with all preamplification, shaping, discrimination, compression, and transmission functionality. Includes power pulsing.
 - Hasn't been done!
 - Electronics:
 - Develop RO for half ladder (~1.5 m)

Silicon Tungsten EMCal

- Figure of merit something like BR^2/σ ,
 - where $\sigma = \mathbf{r}_{pixel} \oplus \mathbf{r}_{Moliere}$
- Maintain the great Moliere radius of tungsten (9 mm) by minimizing the gaps between ~2.5 mm tungsten plates. Dilution is $(1+R_{gap}/R_w)$
 - Could a layer of silicon/support/readout etc. fit in a 2.5 mm gap? (Very Likely)
 - Even less?? 1.5 mm goal?? (Dubious)
- Requires *aggressive* electronic-mechanical integration!

Structure

Electronics Architecture

select appropriate range Mux and 12 bit ADC

Studying options for timing... 10 April 2003

SLAC DOE Program Review M. Breidenbach

ms

Thermal Management

- Cooling is a fundamental problem: GLAST system is ~2 mW/channel. Assume 1000 pixels/wafer and power pulsing duty factor for NLC of 10⁻³ (10 μsec @120 Hz), for 2 mW average power. Preliminary engineering indicates goal of under 100 mW ok.
- Assume fixed temperature heat sink (water cooling) at outer edge of an octant, and conduction through a ~1 mm thick Cu plane sandwiched with the W and G10: $\Delta T \sim 14^{\circ}C$.

10 April 2003

HCal

- Hcal assumed to be 4 λ thick, with 46 layers 5 cm thick alternating with 1.5 cm gaps.
- Prefer "digital" detectors, eg high reliability RPC's (Have they been invented yet???) Probably glass RPC.
- Hcal radiator non-magnetic metal probably copper or stainless
 - Tungsten much too expensive
 - Lead possible, but mechanically more painful.
- Hcal thickness important cost driver, even though Hcal cost small. And where is it relative to coil?

HCal Location Comparison

10 April 2003

Coil and Iron

- Solenoid field is 5T 3 times the field from detector coils that have been used in the detectors. CMS will be 4T.
- Coil concept based on CMS 4T design. 4 layers of superconductor about 72 x 22 mm, with pure aluminum stabilizer and aluminum alloy structure.
- Coil Δr about 85 cm
- Stored energy about 1.5 GJ (for Tracker Cone design, R_Trkr=1.25m, $\cos\theta_{barrel}$ =0.8). (TESLA is about 2.4 GJ) [Aleph is largest existing coil at 130 MJ]

Flux Return/Muon Tracker

- Flux return designed to return the flux! Saturation field assumed to be 1.8 T, perhaps optimistic.
- Iron made of 5 cm slabs with 1.5 cm gaps for detectors, again "reliable" RPC's.

More Cost trade-offs

10 April 2003

Beamline Instrumentation

- High Priority Items:
 - dL/dE analysis
 - complete analysis to extract both tail and core
 - understand external inputs (asymmetries, offsets)
 - possible to extract correlations (energy, polarization)?
 - Extraction line studies
 - expected distributions with disrupted beam
 - expected backgrounds at detectors
 - Forward Tracking/Calorimetry
 - Realistic conceptual design for NLC detector
 - Expected systematics eg: alignment
 - Beam Energy Width
 - Understand precision of beam-based techniques
 - Possible with x-line WISRD?

ALCPG Beamline Instrumentation Working Group: M. Woods /E. Torrence/D. Cinabro

<u>ALCPG IR/Backgrounds Working Group</u> T. Markiewicz, S. Hertzbach

Comparison of Detector Configurations

(Ray Frey)

	TESLA	SD	$^{\rm LD}$	JLC
Tracker type	TPC	Silicon	TPC	Jet-cell drift
ECal				
$R_{\rm min}$ barrel (m)	1.68	1.27	2.00	1.60
Type	Si pad/W	Si pad/W	scint. tile/Pb	scint. tile/Pb
Sampling	$\begin{array}{c} 30 imes 0.4 X_0 \ +10 imes 1.2 X_0 \end{array}$	$30 imes 0.71 X_{\odot}$	$40 \times 0.71 X_0$	$38 imes 0.71 X_0$
Gaps (active) (mm)	2.5 (0.5 Si)	2.5 (0.3 Si)	1 (scint.)	$2 ({\rm scint.})$
Long. readouts	40	30	10	3
Trans. seg. (cm)	≈ 1	0.5	5.2	4
Channels ($\times 10^{2}$)	32000	50000	135	144
$z_{\rm min}$ endcap (m)	2.8	1.7	3.0	1.9
HCal				
$R_{\rm min}$ (m) barrel	1.91	1.43	2.50	2.0
Туре	T: scint. tile/S.Steel D: digital/S.Steel	digital	scint. tile/Pb	scint. tile/Pb
Sampling	$\begin{array}{l} 38\times0.12\lambda~({\rm B}),\\ 53\times0.12\lambda~({\rm EC}) \end{array}$	$34\times 0.12\lambda$	$120 \times 0.047 \lambda$	$130\times 0.047\lambda$
Gaps (active) (mm)	T: 6.5 (5 scint.) D: 6.5 (TBD)	1 (TBD)	2 (scint.)	$3 \; (\text{scint.})$
Longitudinal readouts	T: 9(B), 12(EC) D: 38(B), 53(EC)	34	3	4
Transverse segmentation (cm)	T: 5–25 D: 1	1	19	14
θ_{\min} endcap	5°	2°	2°	8°
Coil				
R_{\min} (m)	3.0	2.5	3.7	3.7
B (T)	4	5	3	3
Comment	Shashlik ECal option in TDR discontinued		option: Si pad shower max. det.	scint. strip (1 cm) shower max. det. (2 layers)

10 April 2003

Cost Control

- Good sense requires cost control:
 - Detectors will get about 10% of the LC budget:
 2 detectors, so \$350 M each
 - We will want the most physics capability we can imagine: Great
 - Vertexing- Stretched CCD's
 - Tracking -Silicon Strips
 - B 5T
 - EMCal Silicon-tungsten
 - Hcal Cu(??) R²PC
 - Muon Tracking Fe- R²PC
- Is this a sensible approach?

Status

- Serious work *beginning* at SLAC & universities.
- Document (~ old fashioned CDR) in ~2 years.

EMCal Readout Board

Luminosity, Energy, Polarization

• Beam Energy

 $\Delta E_{\text{beam}} \sim 200 \text{ ppm}$ from 350 - 1000 TeV Upstream BPM + Downstream WISRD Spect.

 $\mu\mu\gamma$ in forward detector (~200 mRad)

Polarization

 $\Delta P/P \sim 0.25\%$ (P_e- only) $\Delta P/P \sim 0.10\%$ (P_e+ also) Downstream Compton polarimeter t-channel WW scattering

Absolute Luminosity

 $\Delta L/L \sim 0.2\%$ (adequate, not perfect) Forward calorimeter around 50 - 200 mRad

Luminosity Spectrum

Core width to ~ 0.1%, tail level to 1%

e⁺e⁻ acolinearity (necessary but not sufficient!) 10 April 2003 SLAC DOE Program Review M. Breidenbach

Strategy document just completed

Luminosity Spectrum

Acolinearity problems

- Energy, dL/dE both correlated with position along bunch.
- Measures boost, not s'
- Energy imbalance, width imbalance must be input
- Independent real-time width measurements?
- 200 uRad kicks from disruption alone (larger than target accuraccy)
- Many other offsets/degrees of freedom which must be input.

Putting together complete analysis including 'realistic' mis-aligned machine decks from TRC report

Beamline Instrumentation

- Ongoing R&D Work:
 - Luminosity
 - dL/dE analysis (SLAC, Wayne St.)
 - Beamstrahlung Monitor (Wayne St.)
 - Pair monitor (Hawaii, in collab. with Tohoku)
 - Forward calorimeter (Iowa St.)
 - Energy
 - WISRD spectrometer (UMass, Oregon)
 - BPM spectrometer (Notre Dame)
 - Polarization
 - x-line simulations (SLAC, Tufts)
 - Quartz fiber calorimter (Iowa, Tennessee)

 \rightarrow Many important topics uncovered...

SD Endplate Study

SD Momenter Endplate Study - Mar. 03