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Linear Collider Detector 

• Silicon Detector
– Motivation
– Simulation
– Description
– Status
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LC Detector Requirements
– a) Two-jet mass resolution comparable to the natural widths of 

W and Z for an unambiguous identification of the final states.
– b) Excellent flavor-tagging efficiency and purity (for both b- and 

c-quarks, and hopefully also for s-quarks). 
– c) Momentum resolution capable of reconstructing the recoil-

mass to di-muons in Higgs-strahlung with resolution better than 
beam-energy spread . 

– d) Hermeticity (both crack-less and coverage to very forward 
angles) to precisely determine the missing momentum. 

– e) Timing resolution capable of separating bunch-crossings to 
suppress overlapping of events .
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Detector Response Simulation

• Flexible software framework to study 
performance as a function of Rcal, B, etc.

• Inclusion of beamline elements, masks,…
– All backgrounds included (machine, physics,…)

• Better detector modelling:
– Real geometries, support material, etc.

• Improved simulation of detector response
– digitization, merged hits, “ghost” hits, eff’s

SLAC Simulations Group: N. Graf,
G. Bower,T. Behnke, R. Cassell, A. Johnson
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Detector Response Simulation II

• Determine detector response as a 
function of basic parameters → “slopes”.

• Use SD as pivot point from which to 
extrapolate.

• Systematic understanding of the 
complete detector.

• Ab initio reconstruction:
– Track finding & fitting, calorimeter cluster 

reconstruction from realistic detector hits.
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International Collaboration

• Both simulation environments can now model 
the other’s detectors in Geant4.

• European and American efforts have 
converged on common MC data I/O format.
– Allows swapping of detectors.

• Aiming for common reconstruction 
environment and output format.
– Direct reconstruction comparison, code sharing!
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SD (Silicon Detector)
• Conceived as a high performance detector for NLC
• Reasonably uncompromised performance

But
• Constrained & Rational cost

• Accept the notion that 
excellent energy flow 
calorimetry is required, and 
explore optimization of a 
Tungsten-Silicon EMCal and 
the implications for the 
detector architecture…
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Architecture arguments
• Silicon is expensive, so limit area by limiting radius
• Get back BR2 by pushing B (~5T)

–– This argument may be weak, considering quantitative cost This argument may be weak, considering quantitative cost 
tradetrade--offs. (see plots)offs. (see plots)

• Maintain tracking resolution by using silicon strips
• Buy safety margin for VXD with the 5T B-field.
• Keep (?) track finding by using 5 VXD space points 

to determine track – tracker measures sagitta.
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SD Configuration
Quadrant View

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.000 2.000 4.000 6.000 8.000

m

m

Beam Pipe
Ecal
Hcal
Coil
MT
Endcap
Endcap_Hcal
Endcap_Ecal
VXD
Track Angle
Endcap_Trkr_1
Endcap_Trkr_2
Endcap_Trkr_3
Endcap_Trkr_4
Endcap_Trkr_5
Trkr_2
Trkr_3
Trkr_4
Trkr_5
Trkr_1

Scale of EMCal
& Vertex Detector



10 April 2003 SLAC DOE Program Review  M. Breidenbach
9

Vertex Detectors
• Design CCD’s for

– Optimal shape ~2 x 12 cm
– Multiple (~20) ReadOut nodes for fast readout
– Thin -≤ 100 µ
– Improved radiation hardness
– Low power

• Readout ASIC
– No connectors, cables, output to F.O.
– High reliability
– Increased RO speed from SLD VXD3
– Lower power than SLD VXD3
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Vertex Detectors, continued
• Mechanical

– Eliminate CCD supports, “stretch” Si.
– Very thin beampipes??
– Cooling

• Simulation
– Quantify/justify needs

• SLD VXD3 has been removed from SLD for 
damage analysis of CCD’s.



10 April 2003 SLAC DOE Program Review  M. Breidenbach
11

Silicon Tracker

• SLC/SLD Prejudice: Silicon is robust against 
machine mishaps; wires & gas are not.

• SD as a system should have superb track finding:
– 5 layers of higly pixellated CCD’s
– 5 layers of Si strips, outer layer measures 2 coordinates
– EMCal provides extra tracking for Vee finding - ~1mm 

resolution!

• Mechanical:
– Low mass C-Fiber support structure
– Chirped Interferometry Geodesy (Oxford System) Atlas 

has developed a beautiful chirped interferometric
alignment system – a full geodetic grid tieing together 
the elements of their tracker. Can such a system reduce 
requirements on the space frame precision and stability –
reducing its mass and cost?
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Tracker, continued
• Silicon Development

– Build on GLAST development, 
• Utilize GLAST detector style w bond pads on both ends, and
• Develop special ladder end detector w bump bond array
• Reduce mass, complexity at ends

– Tracker Electronics Architecture:
• Plan is to string 10 cm square detectors to barrel half lengths and 

readout from ends. 
• Design “end” detectors to route strips to rectangular grid for bump 

bonding to read out chip (ROC).
• ROC is ASIC with all preamplification, shaping, discrimination, 

compression, and transmission functionality. Includes power pulsing.
• Hasn’t been done!
• Electronics:

– Develop RO for half ladder (~1.5 m) 
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Silicon Tungsten EMCal
• Figure of merit something like BR2/σ,

– where  σ = rpixel ⊕ rMoliere

• Maintain the great Moliere radius of tungsten     
(9 mm) by minimizing the gaps between ~2.5 mm 
tungsten plates. Dilution is (1+Rgap/Rw)
– Could a layer of silicon/support/readout etc. fit 

in a 2.5 mm gap? (Very Likely) 
– Even less?? 1.5 mm goal?? (Dubious)

• Requires aggressive electronic-mechanical 
integration!
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Structure

Pixels on 
6” Wafer
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Electronics Architecture
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Thermal Management
• Cooling is a fundamental problem: GLAST system is ~2 

mW/channel. Assume 1000 pixels/wafer and power 
pulsing duty factor for NLC of 10-3 (10 µsec @120 Hz), 
for 2 mW average power.  Preliminary engineering 
indicates goal of under 100 mW ok.

• Assume fixed temperature heat sink (water cooling) at 
outer edge of an octant, and conduction through a ~1 mm 
thick Cu plane sandwiched with the W and G10:  ∆T~140C.

• OK, but need power pulsing!!!  ..and maintaining the 
noise/resolution is a serious engineering challenge.
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HCal
• Hcal assumed to be 4 λ thick, with 46 layers 5 cm 

thick alternating with 1.5 cm gaps.
• Prefer “digital” detectors, eg high reliability RPC’s

(Have they been invented yet???) Probably glass 
RPC.

• Hcal radiator non-magnetic metal – probably 
copper or stainless
– Tungsten much too expensive
– Lead possible, but mechanically more painful.

• Hcal thickness important cost driver, even though 
Hcal cost small. And where is it relative to coil?
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HCal Location Comparison
Hcal Delta Cost
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Coil and Iron
• Solenoid field is 5T – 3 times the field from detector coils 

that have been used in the detectors. - CMS will be 4T.
• Coil concept based on CMS 4T design. 4 layers of 

superconductor about 72 x 22 mm, with pure aluminum 
stabilizer and aluminum alloy structure.

• Coil ∆r about 85 cm
• Stored energy about 1.5 GJ (for Tracker Cone design, 

R_Trkr=1.25m, cosθbarrel=0.8). (TESLA is about 2.4 GJ)       
[Aleph is largest existing coil at 130 MJ]

BzBr
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Flux Return/Muon Tracker
• Flux return designed to return the flux! 

Saturation field assumed to be 1.8 T, perhaps 
optimistic.

• Iron made of 5 cm slabs with 1.5 cm gaps for 
detectors, again “reliable” RPC’s. 
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More Cost trade-offs
Cost Partial R_Trkr
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Beamline Instrumentation
• High Priority Items: 

– dL/dE analysis 
• complete analysis to extract both tail and core 
• understand external inputs (asymmetries, offsets) 
• possible to extract correlations (energy, polarization)? 

– Extraction line studies 
• expected distributions with disrupted beam 
• expected backgrounds at detectors 

– Forward Tracking/Calorimetry 
• Realistic conceptual design for NLC detector 
• Expected systematics eg: alignment 

– Beam Energy Width
• Understand precision of beam-based techniques 
• Possible with x-line WISRD? ALCPG Beamline Instrumentation Working Group:

M. Woods /E. Torrence/D. Cinabro
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Cost Control
• Good sense requires cost control:

– Detectors will get about 10% of the LC budget:
2 detectors, so $350 M each

– We will  want the most physics capability we 
can imagine:  Great

• Vertexing- Stretched CCD’s
• Tracking –Silicon Strips
• B – 5T
• EMCal – Silicon-tungsten
• Hcal – Cu(??) – R2PC
• Muon Tracking – Fe- R2PC

• Is this a sensible approach?
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Status

• Serious work beginning at SLAC & 
universities.

• Document (~ old fashioned CDR) in ~2 
years.
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Extras
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EMCal Readout Board

Silicon 
Diode 
Array Readout 

Chip

Network 
Interconnect

~1m
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Luminosity, Energy, Polarization
• Beam Energy

∆Ebeam ~ 200 ppm from 350 - 1000 TeV
Upstream BPM + Downstream WISRD Spect.

µµγ in forward detector (~200 mRad)

• Polarization
∆P/P ~ 0.25% (Pe- only) ∆P/P ~ 0.10% (Pe+ also)
Downstream Compton polarimeter
t-channel WW scattering

• Absolute Luminosity
∆L/L ~ 0.2% (adequate, not perfect)
Forward calorimeter around 50 - 200 mRad

• Luminosity Spectrum
Core width to ~ 0.1%, tail level to 1%
e+e- acolinearity (necessary but not sufficient!)

Strategy document 
just completed
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Luminosity Spectrum
Acolinearity problems
• Energy, dL/dE both correlated 

with position along bunch.
• Measures boost, not s’
• Energy imbalance, width 

imbalance must be input
• Independent real-time width 

measurements?
• 200 uRad kicks from disruption 

alone (larger than target 
accuraccy)

• Many other offsets/degrees of 
freedom which must be input.

Putting together complete analysis including
‘realistic’ mis-aligned machine decks from TRC report  
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Beamline Instrumentation
• Ongoing R&D Work: 

– Luminosity 
• dL/dE analysis (SLAC, Wayne St.) 
• Beamstrahlung Monitor (Wayne St.) 
• Pair monitor (Hawaii, in collab. with Tohoku) 
• Forward calorimeter (Iowa St.) 

– Energy 
• WISRD spectrometer (UMass, Oregon) 
• BPM spectrometer (Notre Dame) 

– Polarization 
• x-line simulations (SLAC, Tufts) 
• Quartz fiber calorimter (Iowa, Tennessee) 

→ Many important topics uncovered... 
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SD Endplate Study
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