

BABAR physics program

Marcello A. Giorgi

on behalf of

M.A.G. and Livio Lanceri

SLAC Annual Program Review

Stanford Linear

4/10/03 SLAC- Annual Program Review

Some Fundamental Questions

CP violation and matter-antimatter asymmetry

- SM: 3 generations of quarks, mixing between quarks (CKM mechanism)
- CP symmetry violation, very specific pattern from a single phase
- Large violation predicted by SM in some rare B decays: observed at the B-factories by BaBar and Belle !
- But: SM not enough to explain why our universe is matterdominated
- a systematic investigation of CKM is needed to test "small effects"
- Rare B meson decays and new physics

Mediated by loop diagrams: sensitive to new virtual quanta

higher rates, asymmetries: indirect signatures of new physics

Charm, tau decays and new physics

Also here: loop diagrams as keys for physics beyond SM

Marcello A. Giorgi

4/10/03 SLAC- Annual Program Review

Results: overview

- CP Violation and the Standard Model
 - CKM quark mixing matrix: summarized by Unitarity Triangle

In this talk:

a few

highlights

- angles and sides from B decays
- 13 journal papers + 9 in preparation
- Rare B decays

Charmless decays, Radiative Penguins, Leptonic decays

- 7 journal papers + 9 in preparation
- Other properties of B decays
 - Lifetime, mixing, decays to charm and charmonium, semileptonic decays
 - 20 journal papers + 2 in preparation
- charm, tau, photon-photon, ISR, ...

- 7 journal papers in preparation

•4/10700 new results at the arcello Atter conference and a conference and

CPV and the Standard Model

Experimental ingredients: BaBar optimized for time dependent CP asymmetries

CP asymmetries: Time Dependence

Flavour mixing and CP,T,CPT

$$\frac{\Gamma_{12}}{M_{12}} \simeq -3\pi \, \frac{m_b^2}{m_t^2} \left(1 + \frac{8}{3} \frac{m_c^2}{m_b^2} \, \frac{V_{cb} V_{cd}^*}{V_{tb} V_{td}^*} \right) \qquad \text{SM}$$

 $\neq 1$ CP and T Violation in mixing

As in K sector where $\varepsilon_k = \frac{(p-q)}{(p+q)}$ $\varepsilon \sim O(10^{-3})$

$$\left|\frac{q}{p}\right| - 1 \approx 4\mathbf{p} \frac{m_c^2}{m_t^2} \sin \mathbf{b} \approx 5 \times 10^{-4} \qquad \mathbf{SM}$$

4/10/03 SLAC- Annual Program Review

Assumptions made in the usual sin2 β analysis: $\Delta\Gamma \equiv \Gamma_H - \Gamma_L \approx 0$

Fit without the "usual assumptions"!

Fit B→CP and B⁰→flavor eigenstates ($\Delta\Gamma/\Gamma$, q/p, z and λ_{CP} left FREE)

SLAC- Annual Program Review

90% C.L.

→ Direct limit on ΔΓ/Γ
→ Test of CPT invariance
→ Indirect CP in mixing

The "usual assumptions" work!

$B^0 \otimes p^+p^- \neq sin2a_{eff}$

With incomplete information on Penguin contamination:

- Measure S_{pp} and C_{pp} from both sin**D**m**D**t and cos**D**m**D**t terms.
- Compare with predicted S_{pp} and C_{pp} values for given \boldsymbol{a} , \boldsymbol{b} , |P/T|, and \boldsymbol{d} . Assume for instance: $\boldsymbol{a} = (97^{+30}_{-21})^{\circ}$

$$\boldsymbol{b} = 26^{\circ}$$
$$|P/T| = 0.28$$
$$-\frac{p}{2} < \boldsymbol{d} < \frac{p}{2}$$

From $\sin 2\alpha_{eff}$ to $\sin 2\alpha$? isospin analysis, needs $B^0 \otimes p^0 p^0$

cf. Gronau and Rosner, Phys. Rev. D65, 093012 (2002)

4/10/03 SLAC- Annual Program Review

$B^0 \rightarrow r^{\pm}p^{\mp}(K^{\mp})$: the CP fit

• Time integrated direct CP:

g the $B^{\pm} \rightarrow D^{0}_{CP} K^{\pm}$ approach

 $\sin^2 \gamma$ from the triangles (Gronau-Wyler method):

4/10/03 SLAC- Annual Program Review

Preliminary

 $|V_{ub}| = (4.52 \pm 0.31(stat) \pm 0.27(syst) \pm 0.40(theo) \pm 0.09(pert) \pm 0.24(1/m_b^3)) imes 10^{-3}$

Rare B decays

$b \rightarrow u$: tree, CKM suppressed

$B \rightarrow \rho \gamma$ and $B \rightarrow \omega \gamma$

EW penguin dominated by t quark: BF(b \rightarrow dg) ~ $|V_{td}|^2$

Mode	90% CL (10 ⁻⁶)	SM Expectation (10 ⁻⁶)		
B(B ⁰ \rightarrow ρ ⁰ γ)	<1.2	0.49 ± 0.21		
$B(B^+ \rightarrow \rho^+ \gamma)$	<2.1	0.85 ± 0.40		
B(B ⁰ →ωγ)	<1.0	~ 0.5		

$$\frac{BF(B \to \mathbf{rg})}{BF(B \to K^* \mathbf{g})} < 0.047 \to \left| \frac{V_{td}}{V_{ts}} \right| < 0.36$$

Ali and Parkhomenko (hep-th 0105302)

4/10/03 SLAC- Annual Program Review

Search for B⁺ ® t⁺n

Preliminary

combined:

< **4.1** 10⁻⁴

Semileptonic tags: $BF(B^+ \otimes t^+n) < 4.9^{-1}0^{-4} (90\% CL)$ Fully reco tags: $BF(B^+ \otimes t^+n) < 7.7^{-1}0^{-4} (90\% CL)$

Charm, tau discovery potential

SLAC- Annual Program Review

Another example:

lepton flavour violation

S.M., extended to include v mixing and mass:

 $BR(\tau \rightarrow \mu \gamma) \sim O(10^{-34})$

lepton number is violated in many extensions of the S.M. (present limits, O(10-6) are not far from some model predictions)

Marcello A. Giorgi

BABAR 18

Summary: FY2002, results

• Run1+Run2 was very successful:

- in total Babar recorded 83.9fb⁻¹ (on-peak) + 9.6 fb⁻¹(off-peak)
- About 40 conference papers and 17 journal papers submitted, more results reported at conferences

• Some physics highlights:

- CPV in B decays to CP eigenstates with charmonium established with a precision measurement of $\text{sin}2\beta$
- CPV explored also in charmless decays (sin2 α_{eff});
- search for direct CPV in many rare decay modes;
- Measurements of many decay modes, including:
 - Rare decays (charmless, radiative penguins, ...)
 - Decays to charm, charmoniun and semileptonic decays.
- Measurements of B lifetime and mixing improved with respect to the world average

Summary: FY2003, program

- Run 3 expectations:
 - Until summer 2003: \approx 50% relative increase in integrated luminosity
 - 11 conference papers and 10 journal papers submitted up to now; about 20 new results presented at the winter conferences; many analyses in preparation for the summer
- Highlights
 - Study of sin2β extended to modes dominated by penguin diagrams, basic assumptions (CPT, CP/T) released and tested with higher statistics
 - Study of sin2 α_{eff} extended from 2- to 3-body final states and Dalitz analysis
 - Exclusive tagging "recoil" technique developed and applied both to inclusive semileptonic decays (|Vub|) and to searches of rare decays
 - D⁰ mixing and spectroscopy in the charm sector
 - Rare decays...

4/10/03 SLAC- Annual Program Review

Up to FY2005 and beyond

Luminosity expectations

- 500 fb⁻¹ by end 2006 - 1÷2 ab⁻¹ by the end of the decade

sin2b: projected errors (BaBar)

• Extrapolated statistical and systematic uncertainties

Param.	Channel	$\mathbf{S}(\text{stat})/\mathbf{S}(\text{syst})$	s(stat)/s(syst)	s(stat)/s(syst)
		0.08 aD	0.5 ab	2.0 ab
sin2 b	J/yK_S	0.08 / 0.03	0.037 / 0.018	0.018 / 0.018
	Golden	0.07 / 0.03	0.031 / 0.018	0.015 / 0.018
$\operatorname{Im}(\mathbf{l}_{+})$	D*D*	0.43 / 0.13	0.16 / 0.07	0.08 / 0.03
S	J/ yp ⁰	0.49 / 0.16	0.20 /	0.10/
S	f K _s	0.50 / 0.09	0.20 /	0.10
S	h' K _s	0.34 / 0.03	0.14 /	0.07 /

Statistical uncertainty $\propto L^{-1/2}$ For "golden" modes only $\boldsymbol{s}_{stat} \approx \boldsymbol{s}_{syst}$ at $L \approx 2 a b^{-1}$

4/10/03 SLAC- Annual Program Review

Results and extrapolations for sin2a_{eff}

Results (0.08 ab⁻¹)

Param.	BaBar	Belle
S _{pp}	$0.02 \pm 0.34 \pm 0.05$	$-1.23 \pm 0.41 (+ 0.05 - 0.07)$
C _{pp}	$-0.30 \pm 0.25 \pm 0.04$	$-0.77 \pm 0.27 \pm 0.08$

Extrapolated errors (BaBar)

Param.	Channel	s (stat)/ s (syst) 0.08 ab ⁻¹	s(stat)/s(syst) 0.5 ab^{-1}	s(stat)/s(syst) 2.0 ab^{-1}
S _{pp}	p ⁺ p ⁻	0.34 / 0.05	0.12 / 0.03	0.06 /
C _{pp}		0.25 / 0.04	0.10 / 0.03	0.05 /

Isospin analysis: projections - 2

- BaBar sensitivity on k_{pp} : summary
 - (4-fold ambiguity not included)

Model	BF 10⁶	BF 10⁶	s(k)	s(k)	s(k)
	B® p ⁰ p ⁰	Bbar® p ⁰ p ⁰	0.5 ab^{-1}	2.0 ab ⁻¹	10 ab ⁻¹
Α	2.5	1.5	0.409	0.177	0.075
В	1.5	0.5	0.452	0.258	0.132
C (no bkgd)	2.5	1.5	0.286	0.106	0.045
D	0.6	0.4	0.436	0.316	0.175

• Assumptions:

- $\pi^0 \pi^0$ reconstruction efficiency: $\epsilon_{rec} = 0.18$
- For each B tagging category:
 - Tagging performance ε , D = 1-2w
 - Bkgd effective cross sect. B (×10⁶)

Tag	e	D	В
1	0.09	0.93	2.0
2	0.16	0.82	4.0
3	0.20	0.56	5.0
4	0.20	0.41	6.0

4/10/03 SLAC- Annual Program Review

g from $B^- \rightarrow D^0_{(CP)}K^-$: projections

Recent experimental results (BaBar)

r=0.3 (0.5 ab⁻¹), $\sin^2\gamma = 0.75 \Rightarrow$ fit: $\sin^2\gamma = 0.72 \pm 0.23$, $\gamma = (59.9 \pm 10.2)^\circ$ r=0.2 (2ab⁻¹), $\sin^2\gamma = 0.75 \Rightarrow$ fit: $\sin^2\gamma = 0.71 \pm 0.14$, $\gamma = (58.5 \pm 7.4)^\circ$ r=0.2 $\gamma = 60^\circ \Delta \delta = 30^\circ$ (2ab⁻¹) $A_{CP} = 0.174 \pm 0.031$

4/10/03 SLAC- Annual Program Review

projected errors for $|V_{ub}|$

Some extrapolated yields (BaBar)

Extrapolated yields for B⁺ @t⁺n and B⁺@K⁺nn

Channel	e _{siq}	e _{tag}	Theor.	Yield	Yield	Yield
	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	pred.	(0.1ab ⁻¹)	(0.5ab ⁻¹)	(2ab ⁻¹)
B⁺ ®t⁺n	0.2	1 ⁻ 10 ⁻³	5 ⁻ _10 ⁻	1	6	24
	0.2	5 ⁻ 10 ⁻³	5	6	36	144
B⁺®K⁺nn	0.3	1 ´ 10 ⁻³	4 10-	0.1	0.7	3
	0.2	5 ´ 10 ⁻³	0	0.4	2	9

Present analysis: backgrounds:τν 280 events in 80fb-1Kvv 2 events in 56MBB pairs

4/10/03 SLAC- Annual Program Review

A very exciting physics program

Higher the integrated luminosity.

And more precise and stringent test of the models can be carried out.

Look for an open window on new physics!

4/10/03 SLAC- Annual Program Review

