SLAC E158: Progress and First Results

E158: A Precision Measurement of the Weak Mixing Angle in Fixed Target Møller Scattering

Krishna Kumar University of Massachusetts

Outline

- Physics Motivation
- Experimental Design
- Data Runs and Performance
- Physics Result
- Outlook

Beyond the Standard Model

- •High Energy Colliders
- Rare or Forbidden Processes
- •Symmetry Violations
- Electroweak One-Loop Effects

Complementary Approaches

$$\begin{array}{cccc} \alpha_{QED} & \mathbf{G}_{F} & \overbrace{\gamma}^{\pi} & \overbrace{\pi}^{\gamma} & \overbrace{W}^{T} & \overbrace{b}^{W} & \mathbf{M}_{Z} \\ & & \sigma_{Z} & \mathbf{M}_{W} & \mathbf{A}_{f} \end{array}$$

Precise predictions at level of 0.1% Indirect access to TeV scale physics

World Electroweak Data

World Electroweak Data

Perhaps the Standard Model is already broken

 $\chi^2/dof \sim 30.4/15$ Leptonic and hadronic Z couplings seem inconsistent Probability ~ 1.5%

Perhaps there are bigger effects elsewhere

Electroweak Physics at Low Q²

Logical to push to higher energies, away from the Z resonance LEPII and Tevatron access scales approaching $\Lambda \sim 10$ TeV

Electroweak Physics at Low Q²

Parity Violating Contact Interactions

$$\frac{\delta A_{z}}{A_{z}} \propto \frac{\pi/\Lambda^{2}}{g G_{F}} \longrightarrow \qquad \begin{array}{c} \delta(g)/g \sim 0.1 \\ \Lambda \sim 10 \ TeV \end{array} \qquad \begin{array}{c} \delta(sin \ \theta_{W}) \\ \hline sin^{2} \theta_{W} \end{array} \lesssim 0.01 \end{array}$$

Logical to push to higher energies, away from the Z resonance LEPII and Tevatron access scales approaching $\Lambda \sim 10$ TeV Parity Conserving Contact Interactions

Fixed Target Møller Scattering

Weak-Electromagnetic Interference

E158 at SLAC

A Precision Measurement of $sin^2\theta_W$ at low Q^2

•Asymmetry rises linearly with beam energy

•Figure of merit rises linearly with beam energy

- ·High luminosity
- Precision monitoring at the micron level
- •Systematic control at the nanometer level

SLAC has unique capability

E158 Collaboration

•UC Berkeley
•Caltech
•Jefferson Lab
•Princeton
•Saclay

•SLAC •Smith College •Syracuse

•UMass

•Virginia

7 Ph.D. Students 60 physicists

E158 Chronology

Sep 97: EPAC approval Mar 98: First Laboratory Review 1999: Design and Beam tests 2000: Funding and construction 2001: Engineering run 2002: Physics

E158 New Physics Reach

Electroweak Physics

SLAC E158: Progress and First Results

Statistical Fluctuations

> precision monitoring and control of electron beam fluctuations

April 9, 2003

Systematic Fluctuations

♦ Beam helicity is chosen pseudo-randomly at 120 Hz

- use electro-optical Pockels cell in Polarized Electron Source
- sequence of pulse quadruplets

- Reduce beam asymmetries by feedback
 - Control beam charge and position asymmetries at Polarized Electron Source

Physics Asymmetry Reversals:

- Insertable Half-Wave Plate at Polarized Electron Source
- (g-2) spin precession in A-line (45 GeV and 48 GeV data)

* "Null Asymmetry" Cross-check

• Luminosity monitor measures very forward angle e-p and e-e scattering

Polarized Beam

"strain" boosts polarization, but introduces anisotropy in response

Parameter	E158	NLC-500
Charge/Train	6 x 10 ¹¹	14.3 x 10 ¹¹
Train Length	270ns	260ns
Bunch spacing	0.3ns	1.4ns
Rep Rate	120Hz	120Hz
Beam Energy	45 GeV	250 GeV
e ⁻ Polarization	80%	80%

April 9, 2003

April 9, 2003

E158 Plan View in ESA

Liquid Hydrogen Target

April 9, 2003

Quadrupole Quadruplet

- primary & scattered electrons enclosed in quadrupoles - Mollers (e-e) focused, Motts (e-p) defocused - full range of azimuth

cosO

Dipole Chicane

Target is an 18% radiator
Moller ring is 20 cm from the beam

Line-of-sight shielding requires a "dogleg" or "chicane"

SLAC E158: Progress and First Results

Downstream Configuration

Detector Concept

Detector Cart

Scattered Flux Profile

April 9, 2003

Physics Runs

	Energy	#days @120Hz	# Peta-Electron	#spills	Average Charge	Production Efficiency*
Run 1	45.6 GeV	19.2	67K	125M	5.5×10^{11}	63%
IXun I	43.0 UC V	17.2	0/1		J.J A IU	05 / 0
Run 1	48.8 GeV	14.8	37K	105M	3.5 x 10 ¹¹	69%
Run 2	45.6 GeV	15.2	56K	113M	5.2 x 10 ¹¹	72%
Run 2	48.8 GeV	19.0	63K	153M	4.3 x 10 ¹¹	78%

*Efficiency is avg. delivered rate normalized to 119Hz

Run 1: April 23 12:00 - May 28 00:00 Run 2: October 10 08:00 - November 13 16:00

Run I with PEPII, Run II dedicated
One g-2 flip in each run
λ/2 flip roughly once in two days
Asymmetry inverter flip once a week
Run I data divided into 24 "slugs"

April 9, 2003

SLAC E158: Progress and First Results

29

Beam Asymmetries

Position differences < 20 *nm*

Position agreement ~ 1 nm

Regression Analysis

observed left-right asymmetry distribution

elastic scattering At low Q² : $A_{LR} \sim 10^{-5} * Q^2$ in the ep detector: $Q^2 \sim 0.06 \text{ GeV}^2$:

 radiative tail dominated by elastic scattering: ~ 8% under Moller peak

- additional 1% contribution from inelastic scattering
- 35 ppb +/- 10 ppb
- reduced by 40% in run II

Backgrounds

integrating calorimeter: All dilutions and asymmetries must be measured or bounded

Synchrotron Photons:

- "target out" runs

Corrections Summary

			ppb	
Issue	f	df	A	dA
Beam first order	-	-	-	18
Beam spotsize	-	-	0	5
transverse asymmetry	-	-	5	0*
High Energy photons	0.004	0.002	0	0
Synchrotron	0.0015	0.0015	0	5
neutrons	0.003	0.001	-5	3
ep elastic	0.080	0.020	-11	4
ep inelastic	0.017	0.005	-31	10
soft photons	0.001	0.001	0	9
Pions	0.002	0.002	0	5
	0.109	0.021	42	24

•Run I systematic error will reduce from 24 to less than 15 ppb •Run II corrections will be of order 25 ppb

Normalization Errors

Issue	f	df
Polarimetry	0.85	0.05
Dilutions	0.89	0.02
Energy Scale	1.0	0.01
Geometry	1.0	0.01
Linearity	0.99	0.02

Beam polarization measured using polarized foil target
Same spectrometer used with dedicated movable detector

Raw Asymmetry Result

Moller Detector, BLINDED, Asymmetry vs Slug

SLAC E158: Progress and First Results

Raw Asymmetry Result

Moller Detector, Asymmetry vs Slug

SLAC E158: Progress and First Results

Asymmetry vs Slug

SLAC E158: Progress and First Results

Grand Asymmetries

Grand Asymmetries

Grand Averages

Significance of parity nonconservation in Møller scattering: 3.57 σ

Implications

•Parity is violated in Møller scattering •Limit on Λ_{LL} at the level of 3-4 TeV (90% C.L.) •Limits on extra Zs at the level of 400-500 GeV •Limit on lepton-flavor violating coupling ~ 0.02 G_F

These numbers are currently on par with collider limits

Clearly need to reduce statistical and systematic errors

A doubling of accumulated statistics essential to have major impact

Outlook

- •Analysis continues at an intense pace on Run I and Run II data
- •Systematic errors will continue to reduce with statistics
- •We hope to publish run I data by June
- •Our goal is to unblind run II data just before the start of run III

An efficient run III is essential to have lasting impact
Currently, ~ 7 week run is scheduled
E158 represents a ~ \$10M investment over 5 years
A 10 week run is required to guarantee world's most precise low
Q² measurement and capitalize on investment
The collaboration cannot be sustained past 2003 for physics runs

Conclusions

•A very challenging experiment is producing physics results

- •Parity is violated in Møller scattering
- •Inelastic e-p asymmetry at low Q² consistent with quark picture
- •First measurement of e-e transverse asymmetry analyzing power
- •Preliminary result on A_{PV}: -151.9 ± 29.0 ±32.5 ppb
- • $sin^2 \theta_{eff} = 0.2371 \pm 0.0025 \pm 0.0027$ (preliminary)
- •This experiment could not be done elsewhere in the world
- •There were great benefits from SLAC technical experience
- •We look forward to completing the final analysis of Run I + II
- •We eagerly await a successful Run III
- Future of fixed target physics beyond E158 is in doubt
 Loss of future unique precision measurements
 - •Serious loss to diversity of SLAC physics capabilities