Kavli Institute for Particle Astrophysics and Cosmology

# Presentation to DOE Program Review June 02, 2004

Roger D. Blandford

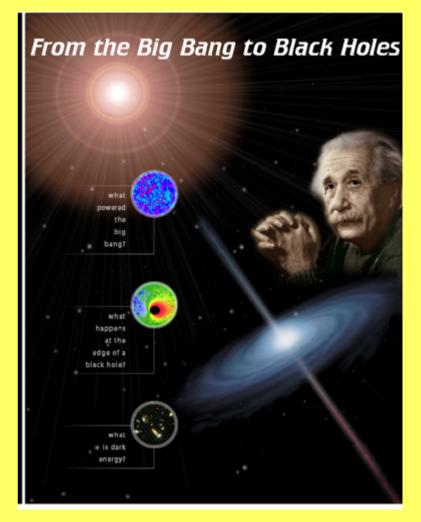


## Kavli Institute for Particle Astrophysics and Cosmology

#### \* Recent News

- Dec 03 2 junior faculty searches
- Jan 04 4 postdocs hired
- Jan 04 Pierre R. Schwob Computing and Information Center
- Feb 04 X-ray Polarimetry Conference
- Mar 04 9 Kavli Institutes
- Apr 04 Stanford Community Day
- Apr 04 Independent Lab status
- May 12-15 Beyond Einstein Meeting








### **Beyond Einstein Meeting**

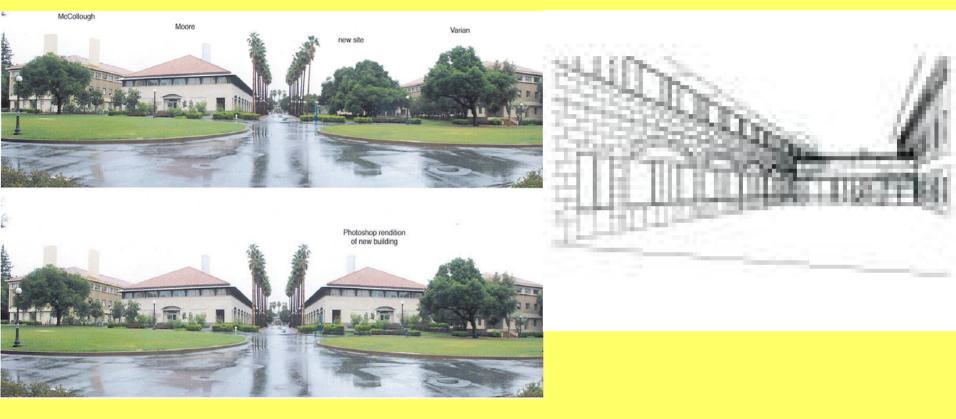
Over 260 participants Excellent talks and presentation of Science Journalistic attention

Political prognosis uncertain due to NASA redirection.





## Kavli Institute for Particle Astrophysics and Cosmology


#### \* Upcoming Events

- June 28 Fred Kavli Building Groundbreaking
- Aug 2-13 SLAC Summer Science Institute
- Oct Varian 2 Ground Breaking?
- Dec 11-17 Texas Symposium











#### **KIPAC** Membership

- Director, Deputy Director
  - Blandford, Kahn
- Administration
  - Formichelli, Nafke+2
- KIPAC New Faculty (Joint SLAC- Campus)
  - +2?
- SLAC Faculty and Senior Staff
  - Bloom, Kamae, Michelson, Craig, Madejski, Marshall +2
- Campus Faculty
  - Cabrera, Church, Linde, Petrosian, Romani, Wagoner
- '03 Postdocs
  - Baltz, Frolov, Gu, Ho, Lyutikov, Marshall, Peterson, Sako, Spitkovsky
- '04 Postdocs
  - Bowden, Bradac, Granot, Zhang



Visitors

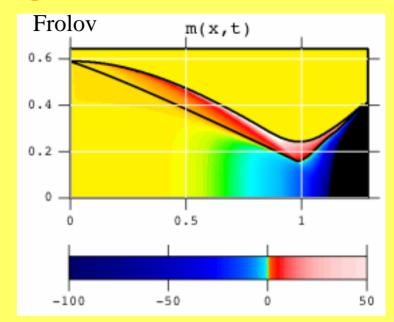
Dekel, Eichler, Greehill, Rephaeli, Weiler

#### Students

Amin, Broderick, Morganson, Muller, Rathore, Suyu, Zheng

### Administration and Organization

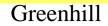

- KIPAC-HEPL Joint administration on campus
  - Varian 2
  - NASA+NSF
  - Hiring Manager
- SLAC administration
  - DOE
- KIPAC administration
  - 2 + 1 staff

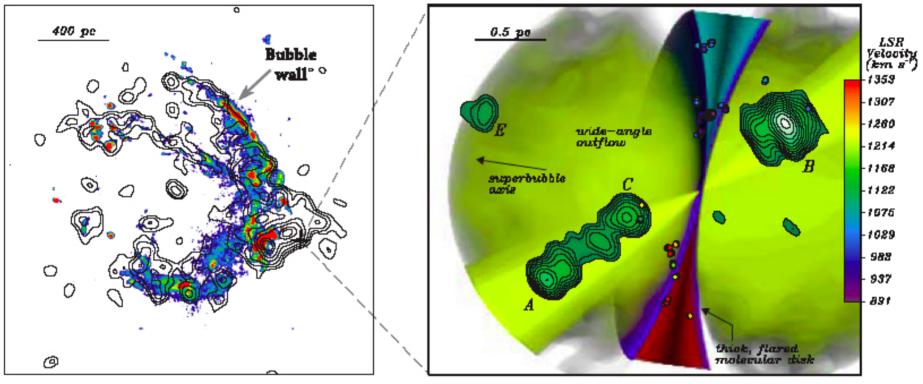



## **Computing Plans**

- Schwob Center
- Data Handling from Large Observational Projects
  - LSST 30PB of data
  - Computing Services Division
- Computational Astrophysics
  - Large scale numerical simulations
    - Cosmology
    - Pulsar Magnetospheres
    - Black Holes
  - New graphical output tools
- DOE Huge Memory Computing Proposal
- Vendor discussions



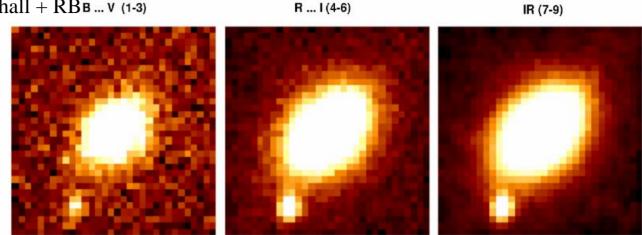



Baltz

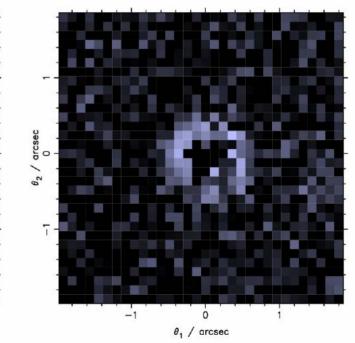


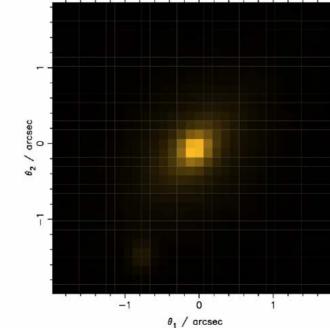
~50 papers (inc. proceedings) ~50 talks excluding new members





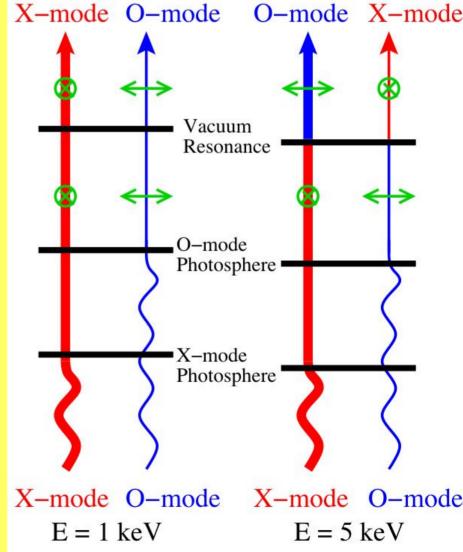




R ... I (4-6)



Reconstructed lens galaxy





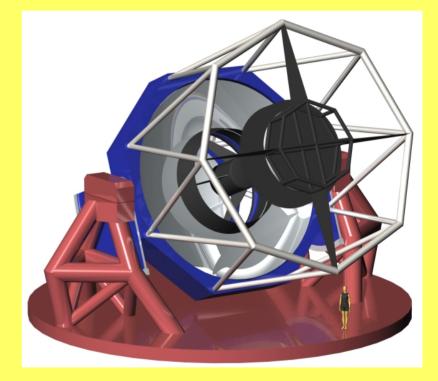





Ray Propagation in Neutron Star Magnetosphere (Ho et al) Also similar physics in relativistic magnetoionic theory study by Broderick and Blandford

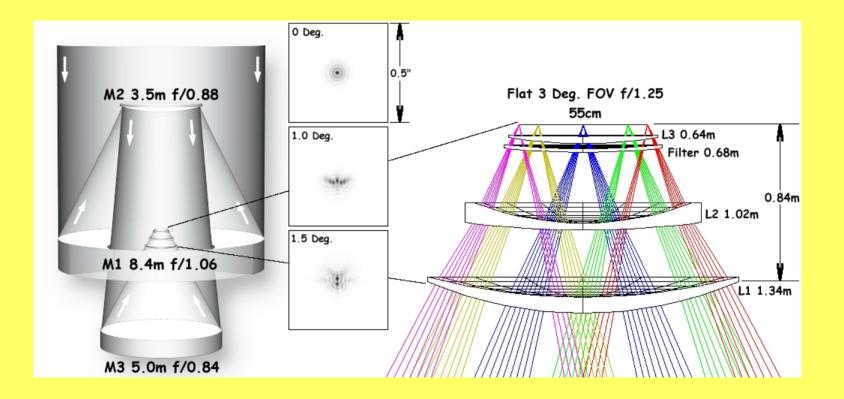





# New Projects at SLAC Associated with KIPAC

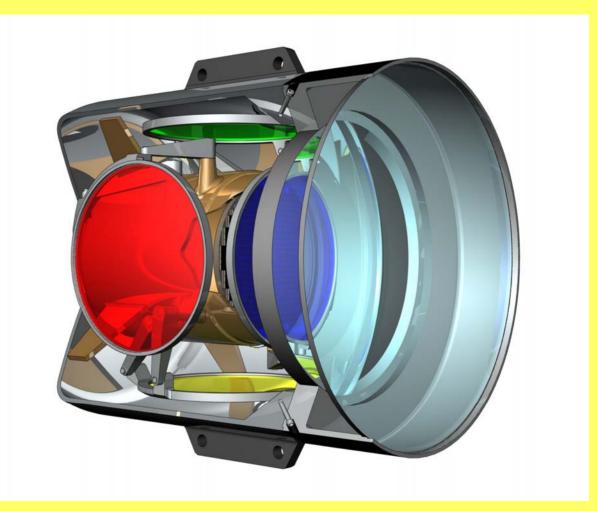
- \* Medium-Term Focus on Understanding "Dark Energy".
  - Described as the most significant discovery in physics in the last 50 years!
  - Our current cosmological model is in a similar state to the "standard model" of HEP 10 –15 years ago: It is clearly "correct", but it has several very surprising elements suggesting "new physics" yet to be unraveled.
  - Progress will come from probing this model on multiple "fronts", i.e. not only constraining parameters but testing for internal consistency via disparate measurement techniques.




## The Large Synoptic Survey Telescope

- \* Will probe DE primarily via measuring the growth of structure in the dark matter distribution through weak lensing.
- \* Planned to be operational by 2012.
- \* A large, wide-field, ground-based telescope that will survey the whole sky with 10 s integrations every few days.
- Proposed as a joint NSF/DOE initiative, with DOE providing the 2.8 Gpixel camera, the DAQ, and a share of the software.
- \* DOE effort will be led by SLAC, with significant hardware and software contributions from BNL, LLNL, and HEP university groups.
- \* Presented to EPAC, SAGENAP, LSST Board






## LSST Optical Design











#### Camera Components

- \* Focal plane array
  - 10  $\mu$ m pixels  $\rightarrow$  0.2 arcsecond/pixel (~1/3 seeing-limited PSF)
  - 55 cm diameter  $\rightarrow$  3° FOV
    - → 2.3 Gpixels
  - integrated front-end electronics
  - 16 bits/pixel, 2 sec readout time  $\rightarrow$  2.3 GB/sec
    - $\rightarrow$  Parallel readout
- Housings (environmental control)
- \* Filters
- \* Optics
- \* Mechanisms
  - L2 position varies with wavelength (filter)
  - Filters insertion
  - mechanical shutter




#### **DOE** Participation in LSST

- \* A collaboration of DOE-funded institutions has been formed to pursue participation in LSST. This collaboration has been working closely with other LSST participants under the coordination of the LSST Director and Project Manager.
- \* The DOE "deliverable" will be the LSST camera system.
- \* SLAC will lead the development of the camera, with significant contributions coming from BNL, LLNL, and DOE-funded university groups (e.g. Harvard, UIUC).
- \* Scientists and engineers at these institutions will also participate in the data acquisition system, the development of pipeline software, and the scientific interpretation of the results.



#### The NASA/DOE Joint Dark Energy Mission

- \* Will probe DE primarily via measurement of Type 1a SNe to constrain the  $d_L$  versus z relationship, and through weak lensing.
- \* Joined SNAP collaboration
- Plan is for SLAC to design and develop the Observatory Control Unit and associated flight software – builds well on SLAC experience in GLAST.
- \* Strong lensing science
- \* The recent NASA/DOE cooperative agreement makes it clear that the SLAC experience in working with both agencies will be a key asset for this project.



#### **BE Program deferred**



#### Fit Within SLAC's Current Program?

- \* OCU development requires a unique blend of skills...
  - Data Acquisition
  - Detector Monitoring and Control
- \* SLAC has extensive experience in these areas...
  - Successful, lead role within 2 major HEP experiments:
    - SLD
    - BaBar
- \* SLAC has space heritage...
  - Lead role in both Electronics and Flight Software for GLAST
  - Demonstrated collaboration with NASA based labs
- \* SLAC has long history of successful collaboration with LBL
  - Physical proximity will be important for such a highly integrated role
- \* Phases well with GLAST and BaBar program
  - BaBar no longer in development
    - GLAST moving out of design/development stage



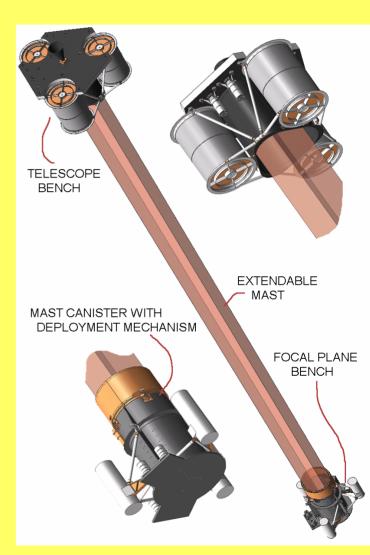
#### Science Role for SLAC in SNAP -Strong Lensing Program

- \* Multiple imaging by galaxies, groups and clusters
- \* Ancillary program complementary to:
  - Supernova cosmography
  - Weak lensing study of large scale structure
  - Galaxy-galaxy lensing study of galaxy halos
- \* Telescope nearly ideal for strong lensing because of
  - 9 filters
  - 0.1(0.05)" pixels
  - 4 day cadence
  - Deep (15 sq deg) and Wide (300 sq deg) surveys
- \* Lensing rate 0.001-0.002 => ~300,000 "events"
  - Quantitative, identification pipeline (cf CLASS)
  - Emphasize standard elliptical galaxy "scattering" with 0.5<z<1
- \* Complementary to LSST and Square Kilometer Array



#### Scientific Goals of Strong Lensing Program

- \* Source Population
  - Study the faintest galaxies building blocks of normal galaxies
    - redshift distribution
    - luminosities
    - star formation rates etc
  - AGN microlensing
  - Rare high magnification events
- \* Lens Population
  - Galaxy substructure out to R ~ 10kpc
  - Cluster substructure
    - Cosmography
- \* Propagation Effects
  - Time delays -> small scale dark matter distribution
  - Quasar absorption lines etc

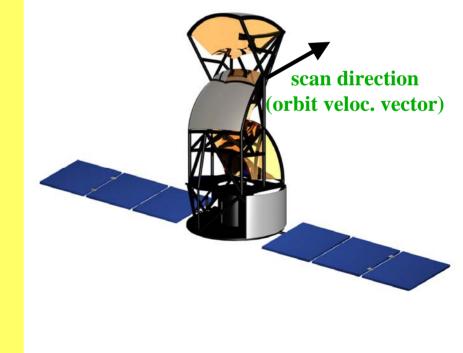





NASA

- \* KIPAC is heavily involved in the SMEX Phase A Concept Study of the Nuclear Spectroscopic Telescope Array: NuSTAR.
  - First hard X-ray focusing mission
  - 1000x increase in sensitivity in 10-100 keV band.
    - AGN Survey
    - Nucleosynthesis
    - GLAST blazar observations
    - Pathfinder for Beyond Einstein missions

Also Constellation X Astro-E 2 and NEXT (Japan) Also ACT, X-ray Polarimetry




#### **EXIST Mission Concept**

#### *Free-Flyer* (500km, *i* ~ 20°):

Zenith pointer (Survey mode)
3-axis pointer (Observatory and survey)
3 coded aperture telescopes (60° x 75° each)
Missiol & Cartan fear beam: all sky/orbit
CZT tiled arrays: 8m<sup>2</sup> total area
Passive and active shielding
25° x 20° collimation/module
Mass, power, telemetry:
8500kg, 1200W, 1.2mbs (X-band)

•Delta-IV launch





#### Implications of Mars-Moon Initiative

- \* Beyond Einstein program exists but heavily cut back
  - LISA delayed by 2 yr -2014
  - C-X to 2015
  - Einstein Probes (including SNAP, EXIST) indefinitely postponed
- \* Explorer Program halved
  - Will delay/preclude NuSTAR
- \* Actively engaged in repairing this collateral damage



#### Summary

- KIPAC still on track
- Tremendous support at Stanford (esp SLAC)
- New areas of interest
  - Neutrinos, gravitational waves astrophysics
  - Large Scale Computing
- New faculty hires critical
- NASA re-organisation a major challenge to our program

