SLAC DOE Program Review

X-Band Linear Collider Path to the Future

X-Band Linear Collider Report*

D. L. Burke

NLC Program Director

* Abstracted from recent presentations to the International Technical Recommendation Panel.

> Stanford Linear Accelerator Center June 2-4, 2004

Extension of conventional warm accelerator technology from 3 GHz (S-Band) to 11.4 GHz (X-Band).

Connected by SLAC-KEK R&D MOU signed in 1998.

Evolution of a common design strategy:

NLC Zero-Order Design JLC Design Study (1996)

NLC DOE "Lehman" Review (1999)

NLC Snowmass 2001 (2001)

GLC Project Report (2003)

GLC/NLC TRC (2003)

Energy for the Energy Frontier (GLC/NLC TRC 2003)

A Partner for the LHC

Luminosity (Raubenheimer) Beam Control – Emittance and Stability Beam Power

Energy and Cost (Adolphsen and Cornuelle) Gradient and Efficiency

Availability (Himel) Overhead and Margins Engineering and Design

Next Linear Collider Test Accelerator

The NLCTA (ca. 1997)

X-Band 1 TeV Baseline RF Unit

Eight 0.6 m Accelerator Structures (65 MV/m Unloaded, 52 MV/m Loaded)

Cost Versus Gradient

Linac cost is a balance between cost of the power sources (increases with gradient), and cost of accelerator length (decreases with gradient).

Minimum occurs at about 80 MV/m where these are equal, but total collider cost is only 5% higher at 55 MV/m.

 \rightarrow Baseline at 65 MV/m.

Unloaded Gradient (MV/m)

(*The linac is about half the total cost of the collider.)

Interlaboratory Collaboration for R&D Towards TeV-scale Electron-Positron Linear Colliders

International Linear Collider Technical Review Committee ILC-TRC

GLC/NLC Level I R&D Requirements (R1) 2003

"Demonstration of SLED-II pulse compression system at design power level."

"Test of complete accelerator structure at design gradient with detuning and damping, including study of breakdown and dark current."

\rightarrow Both R1 requirements have now been met.

Second Generation NLCTA

(X-Band 1 TeV Baseline Demonstration)

8-Pack IGBT Modulator

76 Cores Three-Turn Secondary > 1000 Hours of Operation

Waveforms When Driving Four 50 MW Klystrons at 400 kV, 300 A Each

1) Trace 1:

4.6 VOL 500 nSEC

Next Generation: The 'Two-Pack'

Features

- 6.5 kV IGBTs with in-line multi-turn 1:10 transformer.
- Industrialized cast casings.
- Improved oil cooling.
- Improved HV feed through.

Bechtel-LLNL-SLAC Team

A hybrid 2-Pack modulator is currently running in the SLAC Power Conversion Department lab.

Modulator Performance

(1.6 µs Pulse Width)

	Config	Load	Voltage (kV)	Current (A)	Rate (Hz)	Efficiency (%)
Achieved	8-pack	Water	500	1000	10	
	8-Pack	Four XL4 Klystrons	400	1200	60	58
	2-Pack Hybrid	Water	500	500	120	60
NLC/GLC Baseline	2-Pack	Two PPM Klystrons	500	500	120	70

Prototype modulators operate at voltages and currents exceeding NLC/GLC requirements.

2-Pack efficiency is lower than goal due to hybrid transformer – expect > 70% in next version with integrated transformer.

1 TeV X-Band Baseline RF Unit

Eight 0.6 m Accelerator Structures (65 MV/m Unloaded, 52 MV/m Loaded)

X-Band Klystrons

Solenoid-Focused Tubes: Have Twelve, 50 MW Tubes for Testing, However Solenoid Power = 25 kW.

PPM Klystrons being developed at SLAC, and at KEK in collaboration with Toshiba.

50 MW and 75 MW Tubes tested during past six years:

- Five at KEK/Toshiba.
- Six at SLAC.
- Two industrial (EEV and Toshiba).
- Two tubes to date have met NLC/GLC requirements (all key parameters concurrently).

TRC R2 requirement of 120 Hz operation has been met.

PPM Klystron Performance

(75 MW, 1.6 μ s, 120/150 Hz, 55% Efficiency Required)

KEK/Toshiba

Two tubes tested at 75 MW with 1.6 ms pulses at 50 Hz (modulator limited). Efficiency = 53-56%.

SLAC

Two tubes tested at 75 MW with 1.6 ms pulses at 120 Hz. Efficiency = 53-54%.

1 TeV X-Band Baseline RF Unit

Eight 0.6 m Accelerator Structures (65 MV/m Unloaded, 52 MV/m Loaded)

Second Generation SLED II at NLCTA

Lower Surface Electric Fields (< 50 MV/m) and Limited Pulse Heating (< 40° C)

Example: Power Splitter

Solid-State Modulator and Dual-Mode SLED-II

Power 580 MW to loads (design is 475 MW) at 400 ns.

Operated 300 hours at 510 MW, and over a 1000 at 320 MW.

Turn-key with feedbacks.

TRC R1 Done.

1 TeV X-Band Baseline RF Unit

High Gradient Structure Development

In 1999, discovered gradient limitations in original 1.8 m structures – have since:

Tested 34 structures with over 20,000 hrs of high power operation at NLCTA.

Improved structure preparation procedures – chemical etching, high temperature firing, and high-power processing protocol.

Found structures with lower input power (lower group velocity) more robust against damage from rf breakdown.

Developed designs with low surface currents, optimized gradient profiles, and needed wakefield detuning and damping.

Traveling-Wave Structure (60 cm)

Structure Fabrication

Processing Structures in NLCTA

High Gradient Performance of Recent Structures

Hz (#/hr 60 at **Breakdown Rate**

First four structures continue to be powered by original NLCTA stations.

Running 24/7 since first of April; 700 hours of operation with > 90% uptime $\dots \rightarrow$

April Operation of NLCTA

Structure	Manufacturer	Gradient (MV/m)	Trip Rate (#/hr)	
H60vg4R17-1 SLAC		63.0	0.09	
H60vg4R17-2	SLAC	62.0	0.14	
H60vg3S17-FXC4	FNAL	60.8	0.13	
H60vg3S17-FXC3	FNAL	59.9	0.09	
H60vg3-FXB6	FNAL	60.6	0.03	
H60vg3-FXB7	FNAL	62.4	0.07	
H60vg4S17-1	KEK/SLAC	59.1	0.19	
H60vg3R17	SLAC	60.6	0.07	
Average		61.1	0.10	

May Operation of NLCTA

	(* = Installed	(* = Installed first of May)		
Structure	Manufacturer	Gradient (MV/m)	Trip Rate (#/hr)	
H60vg4S17-FXD1A *	FNAL	65.5	0.31	
H60vg3S17-FXC5 *	FNAL	64.5	0.17	
H60vg4S17-3 *	KEK/SLAC	65.5	0.23	
H60vg3S17-FXC3	FNAL	64.5	0.13	
H60vg3-FXB6	FNAL	64.7	0.01	
H60vg3-FXB7	FNAL	66.6	0.05	
H60vg4S17-1	KEK/SLAC	63.1	0.21	
H60vg3R17	SLAC	64.7	0.19	
Average of	f All 8	64.9	0.16	
Average of Original 5 (was 0.09 @ 60.5)	64.7	0.12	

 \rightarrow Performance improved with running time.

Expect Lower Rates During Beam Operation

Goals

Fully utilize existing infrastructures and facilities.

Provide intellectual ownership and experience with X-Band to those leading Main Linac work packages.

Provide liaison and testing facilities for participating industries.

Plan

Extensions of GLCTA and NLCTA test facilities.

Beams available for component and system testing.

Extension of NLCTA to 1 GeV (See also GLCTA.)

Gradient and Efficiency

Availability (Himel) Overhead and Margins Engineering and Design

Polarized Electron Source

SLC and SLAC ESA

- (1) Thick GaAs, LN2 Temp., Dye Laser
- (2) Thick GaAs, RT, Dye Laser
- (3) Thick AlGaAs, RT, Dye Laser
- (4) 300-nm Strained GaAs, YAG-Ti Laser
- (5) 100-nm Strained GaAs, YAG-Ti or Flash-Ti Laser
- (6) 100-nm Gradient-doped Strained GaAs
- (7) 100-nm Gradient-doped, Strained-superlattice GaAs/GaAsP

ATF Damping Ring at KEK

SLAC and KEK physicists survey the ring.

Horizontal Emittance [mm-mrad]

Three Layers

- 1. Site (many suitable sites identified) and facilities.
- 2. IR/Detector engineering and active (inertial) stabilization.
- 3. Fast intra-train beam feedback (FONT at NLCTA and FEATHER at ATF).

Site and Conventional Facilities

Site Studies in CA and IL

Measurements at the 8-Pack

Los Angeles MTA

Universal City

SLAC DOE Program Review – June 2-4, 2004

Beam Collision Stabilization

Inertial Systems

Inertial Sensor (SLAC)

FONT at NLCTA (Oxford, Queen Mary)

- Demonstrated ~15x suppression of offsets.
- Latency was about 60 ns (c.f. 390 ns bunch train).

SLAC DOE Program Review – June 2-4, 2004

IP Stabilization Summary

IP collisions can be stabilized with >90% of peak luminosity using any <u>two out of the three</u> approaches.

	Active	FONT	Luminosity, %						
Detector	Stabilization			20	40	60	80	1(00
20 nm	No	No		30%				-	-
4 nm	No	No				66%		-	-
~20 nm*	Yes*	No				69%		-	-
20 nm	No	Yes					81%		-
4 nm	Yes	No					91%	-	-
4 nm	No	Yes					95%		2/:
~20 nm*	Yes*	Yes*					90%	J	

Simulations of Beam Collisions

* Measured 20 nm vibration on SLD. Demonstrated R&D solution.

- New "Nested Serpentine" winding (based on HERA magnets).
- □ Allows continuous variation of the beam energy.
- **Study vibrations introduced by cryogenic fluids.**

Prototype of the Final IP Quadrupole

Baseline technologies and design are proven.

Major improvements will come from value engineering and industrial design for manufacture, reliability, and serviceability.

Industrial technologies readily and widely available.

R&D will continue to look for ways to improve on the baseline – e.g., better power efficiency with DLDS – and support CDR/TDR engineering and design .

NLC Project Milestones

Technically-Limited Schedule

Independence of Sources, Damping Rings, Linacs, and Beam Delivery allow significant commissioning with beam during construction.