

FLASH

<u>*FL*</u>uorescence in <u>*A*</u>ir from <u>*SH*</u>owers (SLAC E-165)

Pisin Chen SLAC

Report to DOE HEP Review SLAC, June 2-4, 2004

<u>*Fl*</u>uorescence from <u>A</u>ir in <u>Sh</u>owers (FLASH)

J. Belz¹, D. Bergman⁵, Z. Cao², F.Y. Chang⁴, P. Chen^{3*}, C.C. Chen⁴, C.W. Chen⁴,
C. Field³, C. Hast³, P. Huentemeyer², W-Y. P. Hwang⁴, R. Iverson³, C.C.H. Jui²,
G.-L. Lin⁴, E.C. Loh², K. Martens², J.N. Matthews², J.S.T. Ng³,
A. Odian³, K. Reil³, J.D. Smith², S. Schnetzer⁵, P. Sokolsky^{2*}, R.W. Springer²,
S.B. Thomas², G.B. Thomson⁵, D. Walz³, A. Zech⁵

¹University of Montana, Missoula, Montana
 ²University of Utah, Salt Lake City, Utah
 ³Stanford Linear Accelerator Center, Stanford University, CA
 ⁴Center for Cosmology and Particle Astrophysics (CosPA), Taiwan
 ⁵Rutgers University, Piscataway, New Jersey

* Collaboration Spokespersons

- Cosmic Rays have been observed with energies beyond 10²⁰ eV
- The *flux* (events per unit area per unit time) follows roughly a *power law:* ~E⁻³
- Changes of power-law index at "knee" and "ankle".
- Onset of different origins/compositions?
- ➡ Where does the spectrum stop?

Discrepancy Between Two UHECR Experiments

UHECR: From Source to Detector

Greisen-Zatsepin-Kuzmin Cutoff

• Protons above 6×10^{19} eV will lose sizable energy through CMB

• Super-GZK events have been found with no identifiable local sources

Extensive Air Showers

FLASH useful for future UHEC Experiments

Ground-Based: The Pierre Auger Observatory

⇒ Space-Based: EUSO, OWL/AirWatch

• Hybrid detection

Relies purely on Fluorescence

Issues of Fluorescence

- Detailed shape of the fluorescence spectrum
 - Spectrally resolve fluorescence yield
 - Use narrow band filters or spectrometer
- Pressure dependence of the fluorescence yield
 - Total and individual line pressure dependence
- Effects of impurities on fluorescence yield
 CO₂, Ar and H₂O
- Effects of electron energy distribution on yield

Importance of Spectral Distribution

 At large distances of up to 30 km, which are typical of the highest energy events seen in a fluorescence detector, knowing the spectral distribution of the emitted light becomes essential due to the λ^{-4} attenuation from Rayleigh scattering.

Previous Fluorescence Measurements

- A.N. Bunner, PhD thesis, Cornell (1967)
 - Compiled a spectrum from many sources.
 - Unknown systematic errors.
- F. Kakimoto et al., NIM (1996)
 Measured 3 narrow band lines not a spectrum.
- M. Nagano, FIWAF presentation (2002)

Why Measuring Fluorescence at SLAC?

- Extensive Air Showers (EAS) are predominantly a superposition of EM sub-showers.
- FFTB beam-line provides energy equivalent showers from ~10¹⁵ to ~10²⁰eV.

 -10^{7} - 10^{10} electrons/pulse at 28.5 GeV.

Objectives

- Spectrally resolved measurement of fluorescence yield to better than 10%.
- Investigate effects of electron energy.
- Study effects of atmospheric impurities.
- Observe showering of electron pulses in air equivalent substance (Al_2O_3) with energy equivalents around 10^{18} eV.

THIN TARGET STAGE

- Pass electron beam through a thinwindowed air chamber.
 - Measure the yield over wide range of pressures at and below atmospheric.
 - Measure the total fluorescence yield in air.
 - Measure emission spectrum using narrow band filters or spectrometer.
 - Effects of N_2 concentration. Pure N_2 to air. Also H_2O , CO_2 , Ar, etc.

FLASH Experimental Design Thin Target Stage

- Electron beam passes

 (5x10⁷-5x10⁹ e⁻/pulse)
 through a chamber of air.
 1x1 2x2 mm beam spot.
- HiRes PMTs are used to measure the fluorescence signal.
- 1 cm gap well defined by interior tubes.
- Interior blackened and baffled.

FLASH Experimental Design Thin Target Stage

- Opposing LED calibration source.
- Remotely controllable filter wheel.
- Post filter LED calibration sources (4)
- Signal PMT.
- Symmetric system allows for 2 of each.

FLASH September 2003 Run Background Subtraction

FLASH September 2003 Run Fluorescence Spectrum Using Filters

FLASH September 2003 Run Effect of Humidity

Around 5% lower but within error. Expectation from Theory is that 1% H_2O gives 6% reduction in yield.

FLASH September 2003 Run Effect of Contamination

FLASH Spectrograph

To cross check the fluorescence spectrum measurement made using narrow band filters.

Almost zero noise. Noise looks like Bunner!

FLASH September 2003 Run Spectrum via Spectrograph

Preliminary result: A few calibrations still pending.

FLASH September 2003 Run

Pressure Dependence of Spectrum

Dry air: Fraction of photons in various wavelength bands

FLASH Future Runs

- We have two more runs scheduled for June and July of 2004. Both runs will be in thick target mode (described briefly on next slides).
- The third run may be a simultaneous run of thick target and spectrograph system.

FLASH Experimental Design Thick Target Stage

- We will shower the FFTB beam through a range of shower depths in air "equivalent" material (Al₂O₃).
- Do shower models correctly predict the fluorescence signal?
- Does the signal deviate from dE/dx?
- Are there any visible effects from the change in the distribution of electron energy?

FLASH Experimental Design Thick Target Stage

- In addition to effects caused by impurities in the air (humidity) we also plan to study the effects of the electron energy distribution.
- 10⁷ e⁻ showering at 30 GeV approximately reproduces a 3x10¹⁷ UHECR shower (near shower max).
- 2,6,10, and 14 radiation lengths.

Conclusion

- We have measured the spectrum and total yield of air fluorescence.
- We expect to resolve the spectral shape very well with our combined method of narrow band filters and spectrograph.
- Works on calibration and systematics are ongoing.
- We expect a total systematic uncertainty of 10%.
- Thick Target runs coming soon (next week!)