BABAR Computing

DOE Program Review SLAC

Breakout Session

3 June 2004

Rainer Bartoldus

STANFORD LINEAR ACCELERATOR CENTER

Rainer Bartoldus

BaBar Computing, DOE Program Review, SLAC, 3 June 2004

1

M and 🕲 Laurent de Brunhoff

Outline

- The New Computing Model (CM2)
 - New Kanga/ROOT event store, new Analysis Model, new Micro/Mini, new Bookkeeping
- Overview of Production Activities

- Online, Calibration, Reconstruction, Skimming

- Distributed Computing at Tier A Sites
 - IN2P3, RAL, INFN, GridKa, SLAC
- Production Summary

Computing Model 2 (CM2)

- Builds on the experience from the original Computing Model
 - Have learned what works, what doesn't
 - Addressing issues that are becoming more important with increasing data volume
- Result of a thorough 6 months study by CM Working Group 2
 - Decision to implement in December 2002
 - Implementation launched (and completed!) in 2003

New Event Store

- CM2 Kanga/ROOT
 - Simple, ROOT-based file format
 - Minimal size overhead to keep disk space costs low
 - Used everywhere from Tier-A/C to workstation/laptop
 - Written directly from Production (ER and SP)
 - Support for multiple data components (tag, aod, esd, tru, cnd)
 - Supports requirements of new analysis model

New Analysis Model

- Storage of composite candidate lists
 - User-defined combinatorics
 - Any user-calculated quantities associated with event or candidate
- Centralized Skim Production
 - Opportunity for new ideas 4 times a year
- Provision for easy/fast access to event store
 - Option of interactive access from ROOT prompt

Addresses the main reasons for AWG "ntuple production"

Mini and Micro

- Introduced Mini (DST) format
 - Highly compact output of event reconstruction
 - Contains high-level objects as well as hit information
 - Allows to redo track fitting, vertexing, etc.
 - Very powerful source for analysis+diagnostics
- Changed to New Micro (DST) format
 - Subset of the Mini ("reduced" Mini)
 - Restricted to analysis-level objects, also composites
 - Behaves like Mini in cache mode

Overview of BaBar Production

- Online
- Prompt Calibration
- Event Reconstruction
- Simulation Production
- Skimming

Online Computing

- Online Event Processing / Level 3 Farm
 - Recording data with consistently high efficiency and minimal deadtime (1-2 % at peak luminosity)
 - Reached 300 Hz logging rates out of Level 3 Trigger (3 times design)
- Logging Manager (LM)
 - Single server connected to ~30 Level 3 farm nodes (serializing the data streams)
 - Capability of 500 Hz at 30 KB per event is the current limit (seen in L1 "passthrough" running)

Online Computing (cont.)

- Logging Manager Upgrade
 - Basic Idea
 - Log data in parallel streams to local farm node disks
 - Harvest data asynchronously through one or more servers, merging into single event stream
 - Goals
 - Eliminate dead time due to LM
 - Accommodate logging rates of 50 kB x 500 Hz sustained, and 50 kB x 5 kHz peak (scalable)
 - Ready to be deployed this month!

Prompt Calibration (PC)

- Tracks changes of detector conditions in time
 - Runs off 5 Hz of calibration events selected by Level 3
 - Bhabha, radiative Bhabha, mu pair, hadronic events
 - Extracts calibration constants for each run
 - *e.g.*, beam spot position, SVT timing, alignment, etc.
 - Writes to Conditions Database
 - "Rolling" calibrations:
 - Slowly varying cnds propagated from one run to next
 - Only stage that needs to process runs sequentially
 - Has to keep up with IR2 logging rate

PC Performance

- PC Farms keeping up with data taking
 - Current farms consist of 16 x dual 1.4 GHz PIII CPUs
 - Typically 1 farm for new data, 1-3 for reprocessing
 - Events read from xtc file, fanned out to nodes
 - Used to be capable of 600 pb⁻¹ per day, recently added new server to achieve up to **1000 pb⁻¹ per day**
 - Safe again, but still do not want PC farm to have to scale with luminosity
 - Developed fast Filter to generate small calib. xtc file
 - Will keep PC farms ahead of high luminosities

Event Reconstruction (ER)

- Performs full reconstruction of raw event data
 - Applies conditions data from PC pass
 - Only needs conditions from current run
 - Completely parallelizable at run granularity
 - Allows to scale ER farms to higher luminosities
 - Writes into (new) Event Store

ER Performance

- ER Farms doing processing and reprocessing
 - Currently 4 farms of ~32 x dual 1.4 GHz PIII CPUs plus 2 farms of dual 2.7 GHz PIV
 - Each farm capable of 150 pb⁻¹ (220 pb⁻¹) per day
 - Currently 3 farms for new data, 2 to be used for skimming, 1 for reprocessing
 - Can keep up with new data
 - At the same time allows to reprocess early fraction of the Run with optimized calibrations

Simulation Production (SP)

- Distributed over 27 production sites
 - Mostly Tier-C (universities)
 - Little dependence on a single site
 - stable production rates
 - Between 10 and 600 CPUs per site
 - Total of ~2000 CPUs available for SP
- Resources to produce 60 M events/week
 - SP5 for Run 1-3 data (12-series) ramping down
 - SP6 for Run 4 (14-series) ramped up

• 3M events/wk

Rainer Bartoldus

SP6

- Target and Status
 - Generic BB: 3x lumi - 3.2 M / fb⁻¹
 - udsc + tau: 1x lumi - 4.3 M / fb⁻¹
 - Signal (replicated)
 3.3 M / fb⁻¹
 - 1 B events for Run 4
 - 544 M events done

Cumulative Events by Location

• All signal + generics up to May 1 done by June 30

BaBar Tier A Sites

- The "pillars" of the distributed model
- Originally, IN2P3 in Lyon, France as a replica of SLAC, taking a considerable share of analysis users
- For the (initial) Kanga data
 For the (initial) Kanga data
 - In 2002, INFN, Padova, Italy joined as first Tier A to take on a production task (reprocessing of Run1-3 data); this year also Bologna (CNAF) for analysis
 - Latest addition is GridKa, Karlsruhe, Germany to participate in skimming and soon also analysis

- Analysis
 - Seeing continuously high load of BaBar analysis jobs
 - About 200 jobs running in parallel on average during last month
 - The maximum is > 400 jobs
- Simulation Production
 - MC production has now switched from SP5 (Run 1-3) to SP6 (Run 4)
 - Objectivity Mini + Truth were imported for SP5 conversion into CM2 format

IN2P3 (cont.)

- CM2 Data
 - Import completed through SRB (= Storage Request Broker, a GRID tool!)
 - AllEvents plus all 41 allocated skims are now available at CCIN2P3 for Run 1, 2, 3
- Future
 - More disks expected
 - Preparing to switch from RH 7.2 to RHEL 3 (but BaBar is not alone at CCIN2P3)

- Analysis Resources
 - 304 x dual 1.4 GHz PIII CPUs
 - Queues full + 1000's of jobs waiting most of the time
 - 60-70 new dual 2.8 GHz PIVs to come in June/July
 - 49 TB disk space available
 - All 10- and 12-Series "classic" Kanga data
 - In process of replacing *Streams* with *Pointer Skims*This is freeing up considerable space for CM2 data
 - 30-40 TB new disk coming online in June/July

Rainer Bartoldus

BaBar Computing, DOE Program Review, SLAC, 3 June 2004

RAL: CM2 Data

- CM2 Data Availability
 - ARTF (Analysis Resources Task Force) specified:
 - Tau11, Tau1N and Tau33
 - Quick unofficial survey of users added:
 - BCCC03a3body, BCCC3body, BCCKs3body, BCPi0Ks3body, and BFourBody
 - Will feed back to ARTF for final decision
 - First CM2 data made available last month
 - More to be added as space is being freed up
 - **xrootd** service for CM2 access starting soon

- Event Reconstruction
 - Imported 1.4 TB on best day
 - Often 1.2 TB/day
 - 60 fb⁻¹ done in ER
 (same as IR2) but "110
 fb⁻¹" processed
 - Always need to redo
 early fraction of a new
 Run

• Run4 (re-)processing

- Needed to converge on reconstruction release, conditions (*e.g.* SVT local alignment)
- Officially started on Feb 9th

INFN: Reconstruction

- Control-System Development
 - Developed while in production (now very stable and feature-rich)
 - New CM2 tools for merging, checking collections
 - Lots of new states/checks, and new post processing state machine
- **PR (= PC+ER) Managers**
 - System where managers look after farms on both sides of the Atlantic is working well for BaBar
 - Proved very helpful in raising efficiency

INFN: Analysis

- CNAF (Bologna)
 - Former Tier-B of Roma moved to CNAF end of 2003
 - CNAF also Tier-1 for LHC experiments
- Hardware Resources
 - 2 front-end servers
 - 30 dual PIII clients and 21 dual PIV clients
 - 6 TB of disk for scratch, AWG, conditions
 - 29 TB for event store
 - Major upgrade this summer
 - 88 new clients plus ~70 TB disk

GridKa

- Activities
 - Two main tasks in the past:
 - Skimming
 - Simulation Production (SP5)
 - In the future, in addition:
 - Analysis
 - Ramped down SP during skimming and ramped it up again now

GridKa: CM2 Skimming

- Production Output
 - January to early April
 - GridKa skimmed 1439 collections of Run3
 - Produced 9 merges of 110 collections each
 - Skimming/merging used 150 CPUs (sometimes 200 CPUs) corresponding to BaBar share at GridKa
 - Used > 5 TB of disk space for skimming/merging
 - At present
 - Skimming Run 4 data until Padova is ramped up

SLAC: CM2 Production

• Run 1-3 Data:

- 1.731 x 10⁹ events converted to CM2, skimmed, merged and put in bookkeeping
 - "This is all the available data."
- SP5 Monte Carlo:
 - 1.38 x 10⁹ events converted and merged (target)
 - 147 x 10⁶ BBbar events skimmed
 - Skimming is ramping up now that SP5 conversion is winding down (can do 25-30 M a day, signal 5x faster)
 - 94.1 x 10^6 events merged

CM2 Production (cont.)

• Run 4 Data:

- ~83 fb⁻¹ recorded (as of today)
- 62.9 fb⁻¹ in "Green Circle" dataset (up to May 1) processed, skimmed and merged and put in bookkeeping

- This completes the Green Circle dataset in CM2!

- SP6 Monte Carlo:
 - 544 x 10⁶ events generated
 - 131 x 10⁶ events skimmed
 - 85 x 10^6 events merged

Summary

- Within a year's time, BaBar has reinvented the way it does Computing
- Computing Model 2 is in place and has successfully finished its first production cycle for ICHEP04
- SLAC + the 4 Tier A Centers in Europe are turning around data in record time
- Over the past year, BaBar has become a more distributed experiment than it ever was before
- We have to keep our resources at the cutting edge if we want to master the hoped-for explosion in data volume that PEP-II promises