

Gamma-ray Large Area Space Telescope

Science with the Large Area Telescope on GLAST

DOE HEP Physics Program Review

S. W. Digel Hansen Experimental Physics Laboratory, Stanford Univ.

DOE HEP Program Review – June 3, 2004

GLAST Large Area Telescope (LAT)

	Years	(100 MeV)	(10 GeV)	GeV)	(cm² sr)	# γ–rays
EGRET	1991–00	5.8 °	0.5°	0.03–10	750	1.4 × 10 ⁶
AGILE	2005–	4.7 °	0.2 °	0.03–50	1,500	4 × 10 ⁶ /yr
AMS	2005+?-	_	0.1 °	1–300	500	2 × 10⁵/yr
GLAST LAT	2007–	3.5 °	0.1 °	0.02–300	25,000	1 × 10 ⁸ /yr

DOE HEP Program Review – June 3, 2004

Calorimeter

Derived LAT Capabilities

	EGRET	LAT
Point Source Sensitivity (5σ, >100 MeV)	~5 × 10 ⁻⁸ cm ⁻² s ⁻¹	3×10^{-9} cm ⁻² s ⁻¹ (at high gal. latitude for 1-year sky survey, for photon index of -2)
Source Location Determination	15 ⁷	0.4 [′] (1σ radius, flux 10 ⁻⁷ cm ⁻² s ⁻¹ >100 MeV, 1-year sky survey, high <i>b</i>)
Splitting 1 × 10 ⁻⁷ cm ⁻² s ⁻¹ sources	75′	6´
Resolving 5 × 10 ⁻⁷ cm ⁻² s ⁻¹ extended sources	90´ min (7.5° max)	5´

For flaring or impulsive sources the relative effective areas (~6x greater for LAT), FOV (>4x greater for LAT), and deadtimes (>3 orders of magnitude shorter for LAT) are relevant as well

More fine print: E^{-2} sources, EGRET: 2-week pointed obs. on axis, LAT: 1-year sky survey, flat highlatitude diffuse background

Nature of the LAT Data

- Events are readouts of TKR hits, TOT, ACD tiles, and CAL crystal energy depositions, along with time, position, and orientation of the LAT
- Intense charged particle background & limited bandwidth for telemetry → data are extremely filtered
 - ~3 kHz trigger rate
 - ~300 Hz filtered event rate in telemetry
 - ~13 Gbyte/day raw data
 - ~2 × 10⁵ γ-rays/day

T. Usher (SLAC)

Do we understand the gamma-ray sky?

- Gamma-ray astronomy and astrophysics is, relatively speaking, a very young field of study
- First detection of a source (the Milky Way) was ~30 years ago (OSO-III) and even 15 years ago fewer than 2 dozen sources were known

Celestial sources of high-energy gamma rays

- A few classes of sources are established now; many others are plausible but have not been detectable before
- Even for known source classes e.g., blazars and pulsars improved sensitivity will fundamentally clarify understanding of the physical processes at work

Celestial sources of high-energy gamma rays

Astrophysical γ-ray sources

- Extragalactic
 - Blazars
 - Other active galaxies Centaurus A
 - Local group galaxies Large Magellanic Cloud + starburst
 - Galaxy clusters
 - Isotropic emission (blazars vs. relics from Big Bang)
 - Gamma-ray bursts
- In the Milky Way
 - Pulsars, binary pulsars, millisecond pulsars, plerions
 - Supernova remnants, OB/WR associations, black holes?
 - Microquasars, microblazars?
 - Diffuse cosmic rays interacting with interstellar gas and photons
- In the Solar system
 - Solar flares
 - Moon...

Astroparticle physics

- WIMP annihilation?
- Relics from Big Bang?

Non-thermal processes: particle acceleration and γ-ray emission from jets and shocks

Crab pulsar & nebula (CXC)

Already known Potential LAT discoveries

Example of LAT Science: Baryonic dark matter

- Assumptions:
 - Galactic dark matter is cold gas (i.e., not seen in emission – or absorption somehow – and stable against collapse)
 - CDM-type clustering model clustering of the dark matter into 'mini-halos'
- Consequences:
 - Clumps will be gamma-ray sources (although not necessarily optically thin to cosmic rays)

Simulated Cold Dark Gamma-Ray Sources

Walker et al. (2003)

- Many would be EGRET point sources (i.e., detected but not resolved)
- Sources would be steady & without counterparts (although might be detectable in thermal microwave emission)
- Not strongly concentrated in the plane

Example: Nonbaryonic dark matter

- Some N-body simulations of the distribution of dark matter in the halo of the Milky Way predict a very cuspy distribution (e.g., Navarro et al. 1996)
- If the dark matter is the Lightest Supersymmetric Particle χ , the mass range currently allowed is 30 GeV-10 TeV
- Calculations of the annihilation processes $\chi \ \chi \rightarrow \gamma \gamma$ and $\chi \ \chi \rightarrow \gamma Z$
 - (e.g., Bergström & Ullio 1998) indicate some chance for detection by GLAST
 - Observations can apparently cover an interesting range of the 7-dimensional parameter space for MSSM.
- EGRET apparently didn't see a source coincident with the Galactic center, but also is not very sensitive in the >10 GeV range

D. Engovatov

More: Rotation-Powered Pulsars

- Rapidly rotating magnetized neutron stars (and *B* not parallel to Ω)
- ~8 detected pulsating by EGRET
 - Steady (averaged over a period) sources, and not necessarily seen pulsating at other wavelengths
- Potential acceleration mechanisms are well modeled (Polar Cap and Outer Gap models)
 - ~10³⁵⁻³⁶ erg s⁻¹ luminosities means can see them for a few kpc

Pulsars (continued)

- Pulsars have spectral breaks in the GeV range; the already-low GeV fluxes prevented distinguishing between the models with EGRET
- 'Death line' for rotation-powered pulsars when cannot accelerate particles enough to induce pair cascades
 - Recent evidence suggests that d magnetic photon splitting (γ→γγ) may also kill extremely high field pulsars (>~10¹⁴ G) as radio sources
 - These could still be γ -ray emitters
 - The large area and excellent coverage of the LAT will greatly advance blind period searching for γ-ray pulsars

Harding/R. Romani/D. Thompson

DOE HEP Program Review – June 3, 2004

Summary

The γ -ray sky is diverse and dynamic; observations of highenergy gamma rays provide unique or complementary data relative to other wavelengths

LAT Sim. 1-yr

- We can anticipate many ways that the LAT on GLAST will advance astro and astroparticle physics
- We aren't smart enough to anticipate all advances

EGRET

Backup slides follow

Another example: Gamma-ray bursts

- Something bad (hypernova?) happens at cosmological distances
 - Internal shocks and external shocks \rightarrow pulses and afterglows
- Primarily hard X-ray, although several have been seen at high energies (~100 MeV) with EGRET
 - Recent result shows high-energy component may trace a different particle population, or indicate a proton component
- Quantum gravity effect? Amelino-Camelia et al. (1998) dispersion ~10 ms GeV⁻¹ Gpc⁻¹
 - LAT will have orders of magnitude shorter deadtime than EGRET

DOE HEP Program Review – June 3, 2004

Design of the LAT for gamma-ray detection

- Tracker 18 XY tracking planes with interleaved W conversion foils. Single-sided silicon strip detectors (228 µm pitch). Measure the photon direction; gamma ID.
- Calorimeter 1536 CsI(TI) crystals in 8 layers; PIN photodiode readouts. Image the shower to measure the photon energy.
- Anticoincidence Detector 89 plastic scintillator tiles. Reject background of charged cosmic rays; segmentation limits selfveto at high energy.

 Electronics System Includes flexible, robust hardware trigger and software filters. ~800 k channels, 600 W

Brief History of Detectors

- 1967-1968, OSO-3 detected Milky Way as an extended γray source, 621 γ-rays
- 1972-1973, SAS-2, ~8,000 celestial γ-rays
- 1975-1982, COS-B, orbit resulted in a large and variable background of charged particles, ~200,000 γ-rays.
- 1991-2000, EGRET, large effective area, good PSF, long mission life, excellent background rejection, and >1.4 × 10⁶ γ-rays

- AGILE (Astro-rivelatore Gamma a Immagini LEggero)
 - ASI small mission, late 2005 launch, good PSF, large FOV, short deadtime, very limited energy resolution
- AMS (Alpha Magnetic Spectrometer)
 - International, cosmic-ray experiment for ISS, will have sensitivity to >1 GeV gamma rays, scheduled for 16th shuttle launch once launches resume
- GLAST...

