
Overview of SLAC HEP Program

Persis S. Drell Research Director

Accelerator Physics and Detector Development The Ubiquitous Linac

Focus of Current and Future SLAC Scientific Program

- SLAC program is addressing compelling scientific questions facing the field
 - ♦ Where did the antimatter go? (B-Factory)
 - Are there new symmetries and forces of nature? (B-Factory, NLC)
 - ♦ Why are there so many particles? (B-Factory)
 - What is Dark Matter? How can we make it in the lab? (LSST, JDEM, GLAST, NLC)
 - Can we solve the mystery of Dark Energy? (LSST, JDEM, NLC)
 - Is there grand unification of particles and forces? (NLC, EXO)
 - ♦ What are neutrinos telling us? (EXO)
 - ♦ Are there extra dimensions of space? (NLC)
- SLAC science program extremely broad

Major SLAC HEP/Particle Astrophysics Research Programs

Flavor Physics

BaBar

- Measurement of m_{ve} (EXO)
- Particle Astrophysics and Cosmology
 - GLAST
 - KIPAC

LSST, JDEM,...

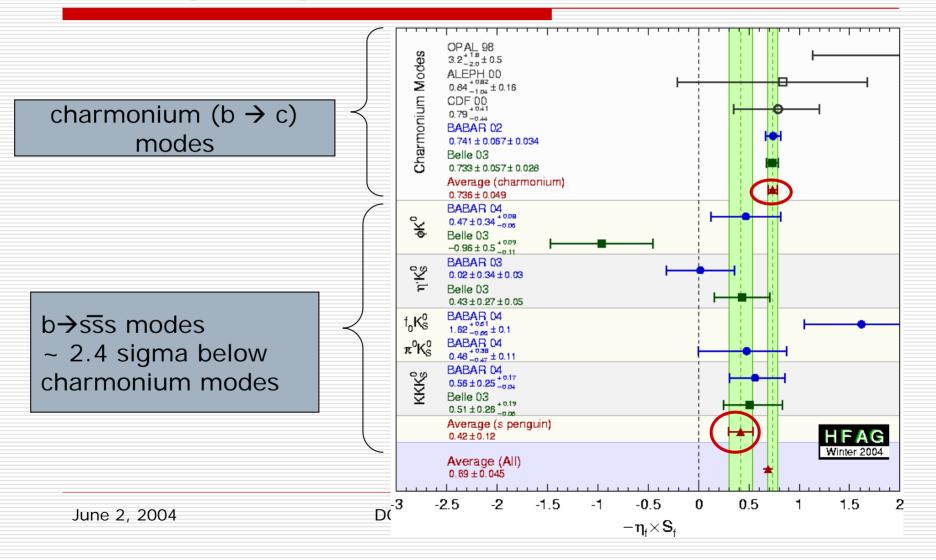
- High Energy Frontier
 - Linear Collider
 - Advanced Accelerator R&D
 - E158: Parity Violation in Moeller Scattering

Program Review Overview

- Plenary Talks: High level program overviews
 - Speak to Charge
- Breakouts:
 - Theory: Fireside Chat
 - Includes astro theory and phenomenology
 - Advanced Accelerator
 - Details of ongoing work; tour of NLCTA
 - BaBar: Details of
 - Detector upgrades, computing, physics output, SLAC effort, collaboration strength, roadmap for future
 - Particle Astro: Details of
 - □ KIPAC Non-Doe programs
 - Nustar, Exist, NEXT, POGO,
 - Planting seeds, not all will grow
 - □ GLAST science
 - SNAP participation
 - Astro Theory Observational efforts

Flavor Physics

■BaBar □EXO


B-Factory Science Program

□ B-Factory science drivers:

- What happened to the antimatter?
 - B mesons a laboratory for study of CP violation
 - Discovery measurement in 2001
 - CP in charmonium (b \rightarrow c) modes now measured to +-7%
 - Quark mixing by weak interactions not the whole story
 - Major progress in α from B-> ρ + ρ -
 - Are there new symmetries/forces of nature?
 - Unique access to flavor sector of 'new physics'
 - \Box CP in b \rightarrow sss modes provides crucial testing ground for SUSY
 - Intriguing discrepancy!
 - Can we determine the pattern and properties of the quarks and leptons?
 - \Box e+e- b factories are also τ and charm factories
 - Surprises of last year: new charm strange quark states

If central value remains as is, this would become ~4 sigma by 2005

Intriguing Hint?

B-Factory Program

- PEP-II Accelerator
 - Collides e+ and e- with unequal beam energies at E_{CM}=10.58 GeV
 - Premier tool for studying physics of heavy flavor
- BaBar Detector
 - Optimized for B-physics at asymmetric energy collider
 - Run by International Collaboration of ~600 physicists from 77 institutions in 10 countries
 - Strong laboratory support for premier program
 - Strong International Collaboration Leadership
 - Spokesman: Marcello Giorgi (Pisa/INFN)
 - □ Spokesman Elect: David MacFarlane (UCSD)
 - □ Analysis Coordinator: Jeff Richman (UCSB)
 - Technical Coordinator: Bill Wisniewski (SLAC)
 - Computing Coordinator: Stephen Gowdy (SLAC)

USA [38/300]

California Institute of Technology UC. Irvine UC, Los Angeles UC. Riverside UC, San Diego UC. Santa Barbara UC. Santa Cruz U of Cincinnati U of Colorado Colorado State Florida A&M Harvard U of Iowa Iowa State U LBNL LLNL U of Louisville U of Marvland U of Massachusetts, Amherst MIT U of Mississippi Mount Holyoke College SUNY, Albany U of Notre Dame Ohio State U U of Oregon U of Pennsylvania Prairie View A&M U Princeton U SLAC U of South Carolina Stanford U U of Tennessee U of Texas at Austin U of Texas at Dallas Vanderbilt U of Wisconsin Yale

The BaBar Collaboration 10 Countries 77 Institutions 593 Physicists

Canada [4/20]

U of British Columbia McGill U U de Montréal U of Victoria

China [1/5] Inst. of High Energy Physics, Beijing

France

LAPP, Annecy LAL Orsay LPNHE des Universités Paris VI et VII Ecole Polytechnique, Laboratoire Leprince-Ringuet CEA, DAPNIA, CE-Saclay

[5/51]

Germany [4/31]

Ruhr U Bochum Technische U Dresden Univ Heidelberg U Rostock

DOE HEP Program Review

Italy

[12/101]

INFN, Bari INFN, Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova & Univ INFN, Milano & Univ INFN, Milano & Univ INFN, Padova & Univ INFN, Padova & Univ INFN, Pisa & Univ & ScuolaNormaleSuperiore INFN, Perugia & Univ INFN, Roma & Univ INFN, Torino & Univ INFN, Trieste & Univ

The Netherlands [1/5]

NIKHEF, Amsterdam

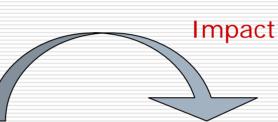
Norway

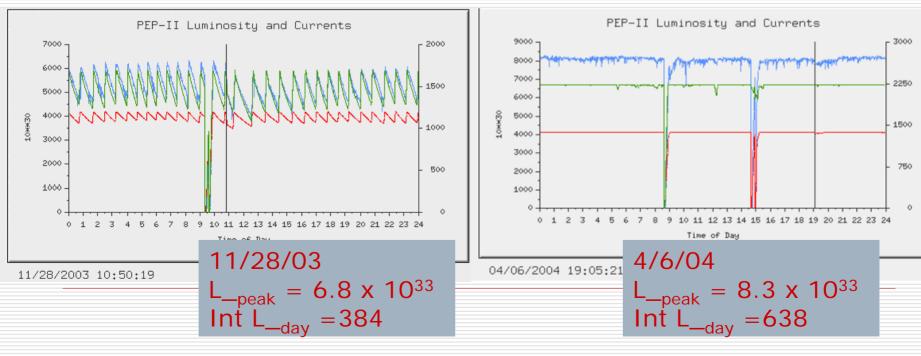
y [<mark>1/3</mark>]

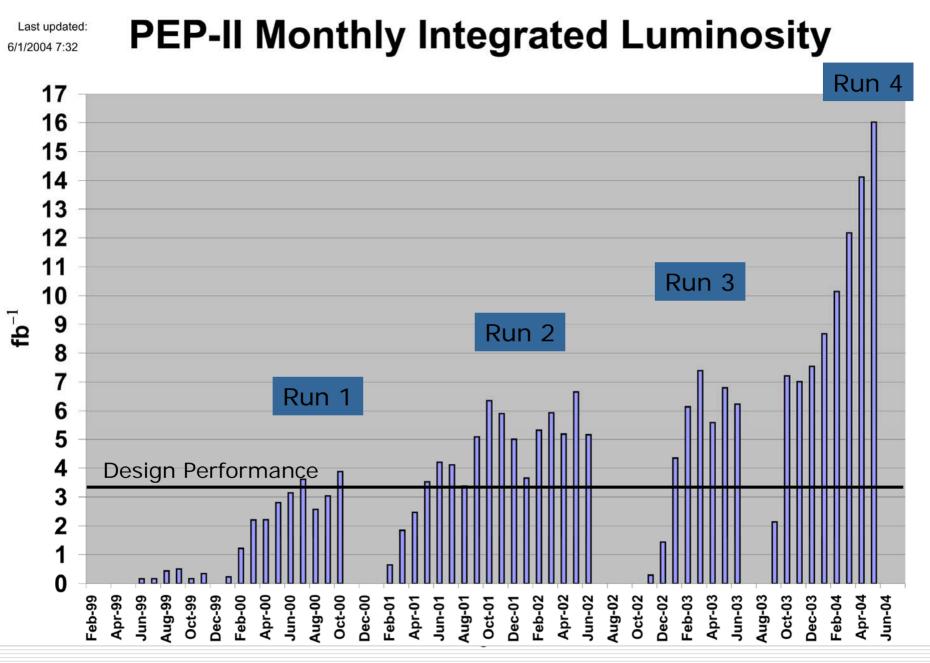
U of Bergen

Russia [1/11] Budker Institute. Novosibirsk

United Kingdom [10/66]


U of Birmingham U of Bristol Brunel U U of Edinburgh U of Liverpool Imperial College Queen Mary , U of London U of London, Royal Holloway U of Manchester Rutherford Appleton Laboratory


June 2, 2004


PEP-II: Accomplishments of Past Year

Director led task force

- Raise currents
- Improve reliability
 - Trickle injection

BaBar: Accomplishments of Past

Year

- On track to add 100fb-1 to analyzed data sample by end of run 4
- Preparation for IFR replacement
 - Summer 2004
- New computing model
- Physics!!

	BABAR	Belle
<2003	34	54
2003	47	28
2004 (May)	14	9
Total*	96	91

* Total papers published and submitted

PEP-II Plans for Future

□ In the next year:

- Lower β*
- Shorter bunches
- Increase current
- Add RF
- Add cooling
- Longer range:
 - Continue to lower β^*
 - Continue to raise currents
 - Increase number of bunches
 - Hardware completed Fall 2006
- Goal

Increase to $L_{peak} = 2.4 \times 10^{34}$ by Summer 2000

BaBar Plans for Future

Hardware upgrades near term

- Summer 2004
 - Replace 2 sextants of IFR (m detector)
 - **Trigger upgrade**
- Summer 2005
 - Replace 4 sextants of IFR
 - DC electronics
 - Possible silicon intervention
- Long term plans
 - Strong collaboration commitment to 2010
 - Detector in excellent shape to 2010 with minor mods
 - Physics targets:
 - \square "Sin2 β is not a measurement, it's a physics program"
 - 2006: 10-25% measurements of b->s modes
 - 2010: suite of measurements probing complementary aspects of flavor physics all at 5-10% level

Flavor Physics

EXO: Enriched Xenon Observatory

- □ Search for $\beta\beta0\nu$ decay in ¹³⁶Xe-->¹³⁶Ba⁺⁺ e⁻ e⁻
 - Observation of decay would provide direct evidence on:
 - Lepton number violation
 - Neutrinos are Majorana fermions
 - □ Set neutrino mass scale
- EXO Philosophy
 - Excellent energy resolution (separates $\beta\beta 0\nu$ from $\beta\beta 2\nu$)
 - Positive ID Ba Ion (Ba tagging)
- **EXO** goal: $< m_{ve} > ~10$'s of meV

EXO: R&D Progress in Past Year

Progress in Past Year

- Single ion Ba+ tagging at different residual Xe pressures
- Improved LXe energy resolution
- Xe purification for long e- lifetime
- Procurement/qualification of low background materials
- Isotopic enrichment of large amounts of 136Xe
- □ Goals for 2005
 - Continue to study single ion Ba+ tagging at different residual Xe pressures
 - Demonstrate Ba ion lifetime and grabbing from LXe
 - Single ion Ba tagging in LXe
 - Construction of 200kg Prototype

EXO: Future Plans

- 200kg prototype
 - Study detector performance (no Ba+ tagging)
 - Look at backgrounds
 - Measure $2\nu\beta\beta$ mode with 1-2 year run
 - Sensitivity of ~0.2 eV to $0\nu\beta\beta$ mode
- Goal: Completion of R&D effort in next 2-3 years
 - Successful R&D would lead to proposal for full EXO

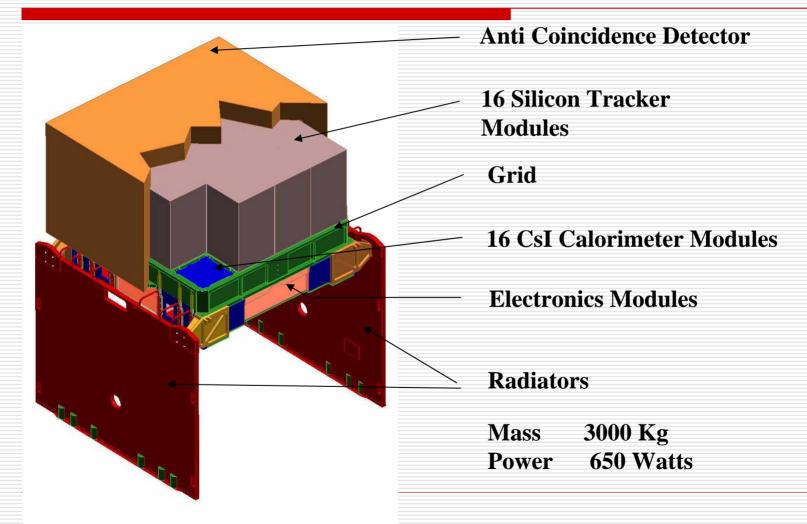
Particle Astrophysics and Cosmology

GLAST KIPAC: Kavli Institute for Particle Astrophysics and Cosmology FLASH

Particle Astrophysics and Cosmology at SLAC

- SLAC's HEP mission has broadened to include particle astrophysics and cosmology
 - Science Drivers for Particle Astrophysics program
 - Understanding the "Quantum Universe"
 - ♦ What is Dark Matter? How can we make it in the lab?
 - Solve the mystery of Dark Energy?
 - Look for opportunities where SLAC plays unique and enabling role
 - Intellectual Leadership
 - Engineering, Project Management, Ability to leverage off existing resources
 - Technical Expertise
 - E.g. GLAST

GLAST


GLAST: γ-ray Large Area Space Telescope

- GLAST measures direction, energy and time of celestial gamma rays from 20MeV 300 GeV
- Will Survey entire sky every 3 hours
 - Dark Matter Searches
 - Endpoints of Stellar Evolution: Black Holes, Neutron Stars, Sne remnants
 - Active Galactic Nuclei and Gamma Ray Bursts
 - Discovery!
- Joint Particle Physics/Particle Astrophysics venture

□ Involves 5 nations, 9 funding agencies

Fabrication project has been challenging

LAT Instrument

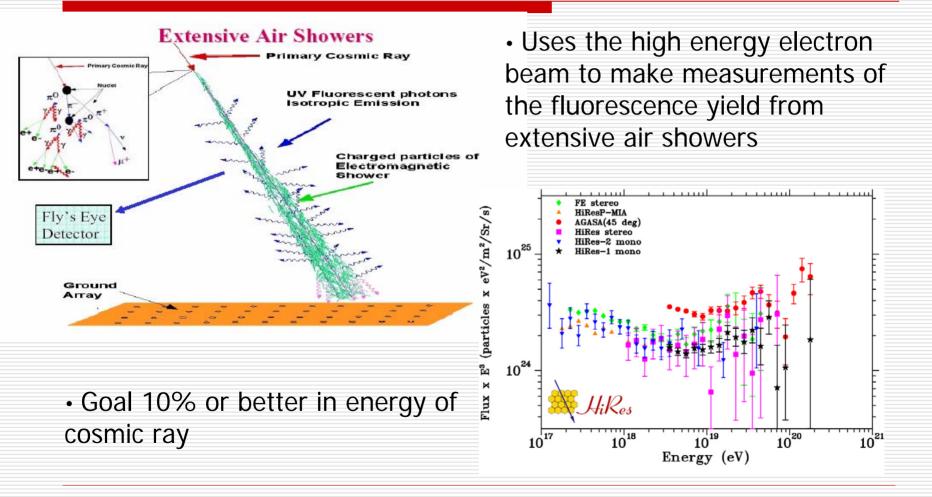
GLAST: Events of Past Year

- CNES withdrew financial support for project
- New project manager; organizational changes
- Project successfully rebaselined
 - Cost growth: \$17.2M
 - Launch delay: 3 months
 - Strong support from NASA, DOE, SLAC & Stanford
- Successful CDR/CD-3 review
- □ LAT engineering model tested
- □ NASA Confirmation Review 12/4/03—Successful!
- Flight hardware in fabrication
- Funding profile problems (helped by Stanford, NASA)

GLAST: Future Plans

□ Next Year:

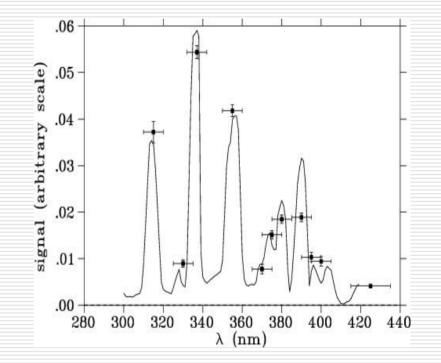
- Work to hold Schedule
 - As transition to fabrication of flight hardware encountering more difficulties than anticipated
 - The laboratory continues to put the highest priority on successful and timely completion of the project
- Delivery of Flight hardware to SLAC
 - Integration and Test
 - Build up of ISOC and preparation for science
- Longer Term:
 - Launch 2/07
 - Science!
 - □ First year all sky survey
 - 5 year mission; extendable to 10 years


KIPAC: Kavli Institute for Particle Astrophysics and Cosmology

- Institute of Stanford University
 - Institute building on the SLAC site funding by gift from Fred Kavli
- Director reports to Stanford Dean of Research
 - 9 new faculty
 - Most if not all will be joint campus/SLAC
 - Director and Deputy Director recruited
 - Roger Blandford (CalTech)
 - □ Steve Kahn (Columbia)
 - Establishes Stanford/SLAC/DOE as intellectual force in field
- Institute brings in funds from NASA and NSF in addition to DOE funds through SLAC
 - Highly leveraged by > \$20M investment by Stanford University
- Growing fast!
 - > 20 new people including 3 professional staff, 8 postdocs, 5 students, and lots of visitors

Particle Astrophysics and Cosmology: The Future

- Potential SLAC/KIPAC Projects
 - SNAP Collaboration (JDEM)
 - □ 2m telescope, 0.7 sq deg field in space
 - Study high z SNe Dark Energy
 - Weak Gravitational lensing → Dark Matter
 - Strong Lensing → Small scale structure
 - LSST
 - □ 8.4 m telescope, 8.6 sq deg field on the ground
 - Weak lensing survey of entire sky → Dark matter power density spectrum→ Constraints on Dark Energy
- Many other NASA funded KIPAC Projects under discussion (NuStar, Exist, Next, POGO, ...)
 - Focus of breakout session
- Theory effort already very productive
- Search for next 2 faculty underway


FLASH (E165)

FLASH (E-165) Cont.

Objectives

- Spectrally resolved fluorescence yield to better than 10%.
 - Effects of atmospheric impurities.
 - Dependence on electron energy.
- □ First run 9/03
- Second run 6/04

High Energy Frontier

Linear Collider E158 Advanced Accelerator R&D

The Linear Collider

Linear Collider Science Drivers

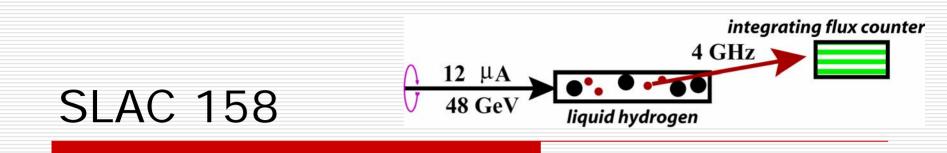
- ♦ Are there new symmetries and forces of nature?
- ♦ What is Dark Matter? How can we make it in the lab?
- Solve the mystery of Dark Energy?
- ♦ Is there grand unification of particles and forces?
- ♦ Are there extra dimensions of space?
- Linear collider essential to establish quantum nature of the 'dark universe'.

Strategic Look at Linear Collider

- High Energy e+e- LC highest priority new machine for world community
- SLAC leads field in development of LC design and technology
 - Champion of warm RF technology
 - SLAC will play leadership role independent of technology choice
- How will the technology choice impact the lab?
 - Scope of SLAC's role in LC approximately independent both of the technology adopted for the Linear Collider, and of its site.
 - SLAC will invest heavily with intellectual capital
 - □ LC can not happen without strong SLAC participation.

NLC Program

R&D Progress in past year


- Both TRC R1 challenges met
 - □ 65MV/m accelerating gradient
 - Pulse compression in SLED-II design
- International Technology Recommendation Panel had 2-day site visit at SLAC
- Possible technology recommendation by August
- Plans for near future (Internationally)
 - Formation of globally federated design group

LCD Program

- Need to grow program of linear collider detector R&D (ALCSG)
 - SLAC is working with LBNL and FNAL to provide opportunities for user community to engage
- Simulation Effort
 - Supports national and international effort
- Concept Development
 - Integrated detector approach base on Silicon
 - One of several approaches in the community
- Beam Instrumentation (L, E, P)
 - Linac Beam offers unique opportunities
 - □ LOI at EPAC encouraged

High Energy Frontier

Linear Collider E158 Advanced Accelerator R&D

$$A_{LR} = 0.18 \text{ ppm}$$

 $\delta(A_{LR}) = +/-7\% +/-3\%$

$$\frac{e}{z^{e}\gamma} = \frac{e}{e} = \frac{e}{f \cap f}$$

$$\frac{e}{g ee \alpha} (1 - 4 \sin^{2}\theta_{w})$$

E158 Collaboration

•UC Berkeley
•Caltech
•Jefferson Lab
•Princeton
•Saclay

- •SLAC
 - •Smith College
 - •Syracuse

•UMass •Virginia New Physics new forces M_{Z'}~ 1.0 TeV

June 2, 2004

120Hz Production Running

E-158 Beam Parameters

Run 1: April 23 – May 27, 2002 Run 2: October 10 – November 13, 2002 Run 3: July 10 – September 6, 2003

Parameter	Proposal	Achieved
Intensity at 48 GeV	6 x 10 ¹¹ / pulse	5.3 x 10 ¹¹
Intensity at 45 GeV	3.5 x 10 ¹¹	4.3 x 10 ¹¹
Polarization	80%	85%
Repetition Rate	120 Hz	120 Hz
Intensity jitter / pulse	2% rms	0.5% rms
Energy jitter / pulse	0.4% rms	0.03% rms
Energy spread	-	0.15% rms
Delivered Charge* (Peta-E)	345K	410K

*proposal number for delivered charge allows 20% inefficiency factor for beam quality cuts and experimental efficiency

SLAC E158: Past Year

- Run 1 result is final and published in PRL.
- Run 2 result is preliminary and was first released last fall.
 - Preliminary: sin²θ_W = 0.2366 +/- 0.0018 +/-0.0014 (I+II)
- Run 3 is still blinded
 - Preliminary result in next 1-2 months
 - Final result published in fall.

Fate of Fixed Target Program

New Proposals

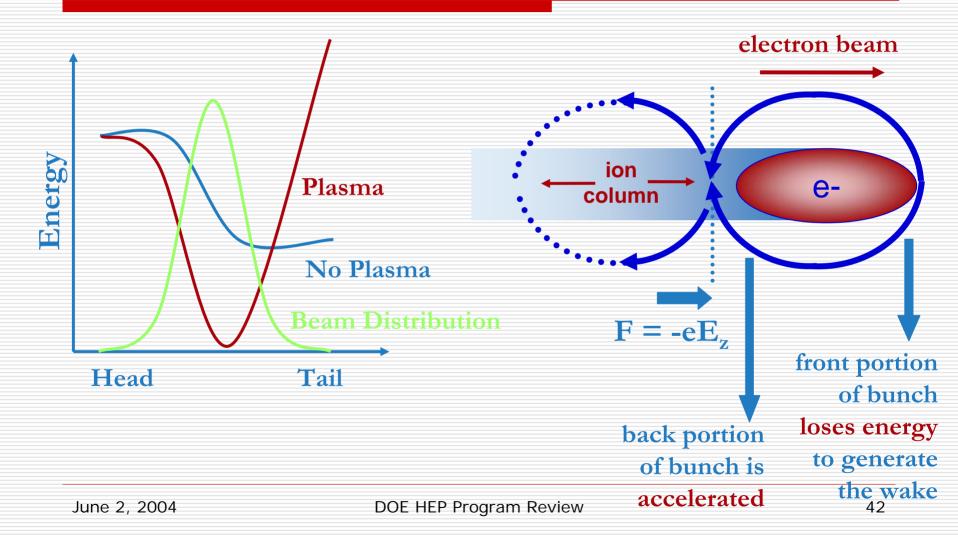
Real Photon Experiments cancelled

- DIS-Parity LOI to EPAC in June
 - Excellent science, recommended by EPAC
 - Prescott experiment (x 20 precision)
 - □ Insufficient resources (~\$5M) to do in timely way
- Future Fixed Target Experiments in the Endstation?
 - Not a programmatic priority
 - Facility will be kept in operational shape for test beams, LCD R&D, future accelerator R&D, etc..
 - Loss of experimental facility to HENP community

High Energy Frontier

Linear Collider E158 Advanced Accelerator R&D

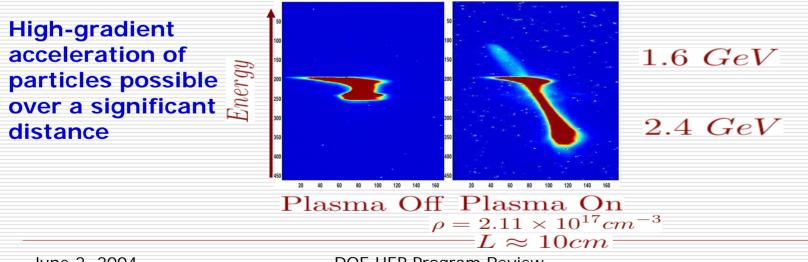
Advanced Accelerator R&D


- Preparing for challenges of longer term future
- Explore underlying physics
- Proof of principle experiments
 - E164/E164X Plasma wake field acceleration program using Short Pulse Source

Producing surprising results

LEAP/E163 – Laser Acceleration in Dielectric Microstructures

□ In construction, hope to complete in next year.


Plasma Acceleration

Plasma Acceleration

Past year

- Generated short (<100fs) pulses</p>
 - □ Wake Field Amplitude ~ $1/\sigma_{7}^{2}$
- Demonstrated acceleration in plasma

Theoretical Physics

SLAC Theory Group

- Primary mission: to advance theoretical high-energy physics, and to train young scientists.
 - In addition, some members interact strongly with the SLAC experimental program
 - Interests of the group span a range of extremely challenging problems of relevance to national and international program
 - Group well integrated with ITP on campus
 - Increasing opportunities for interactions with KIPAC

Theory Group: Programmatic Connections

- Members of the Theory faculty and staff have strong connections to the various experimental programs here at the lab and elsewhere:
 - Linear Collider
 - Peskin, Rizzo, Hewett, Pierce
 - LHC
 - Dixon, Anastasiou
 - Cosmology
 - Kachru, Silverstein, Alexander, Maloney, Pierce
 - Low-energy and exclusive QCD
 - Brodsky
 - B-Physics
 - Hewett, Quinn, Becher, Hill

Computing

Computing

- Forefront computing at SLAC underlies many of the experimental programs.
- □ Key strength:
 - bringing application scientists, applied mathematicians and computer scientists together
 - creates revolutionary new approaches, both application-specific and generic.
- One of world's leading efforts in data-driven computing and large scale data management
 - necessitated by the huge explosion of data from the BaBar detector.
- Major additional efforts focus on applications in accelerator modeling and particle simulations.
 - Positioned to support new applications that use computation as a tool for discovery in particle astrophysics, cosmology, and bio-molecular simulations.
- Revolutions in science increasingly founded on, and driven by, computing.
 - Future focus on transforming the interaction between scientists and their data to transform the science being performed.

Summary

- Enormous opportunities for world class science at SLAC
- SLAC's programs and leadership central to national and international effort
- Programs are science driven, innovative, flexible and responsive to scientific drivers