BaBar Physics Program

Jeffrey D. Richman
BaBar Physics Coordinator
UC Santa Barbara and SLAC

DOE High Energy Physics Program Review, June 3, 2004

Outline

- Major physics goals
- Physics productivity, organization, planning
- Physics progress: a sampling
\& CP violation in \boldsymbol{B} decays: a brief primer
\Leftrightarrow The new $\sin 2 \beta$ program: the charmonium benchmark vs. the penguins
\& Quest for alpha: a new approach
\leftrightarrow Rare decays: a growth industry
$\leftrightarrow B$ "beams" \& their applications-CKM elements and the dynamics of B decay
\Leftrightarrow Surprising spectroscopy: the new charm-strange mesons
- Prospects for summer 2004 and beyond
- Conclusions

BABAR Physics Goals

1. Perform comprehensive set of measurements of CP-violating asymmetries in B meson decays. Test the SM and search for CPviolating amplitudes from processes beyond the SM.
2. Systematically map out the new territory of rare B decay processes, including all that have sensitivity to new physics. (Also probe new physics in τ and charm decays.)
3. Measure the rates for all processes that can be used to extract the magnitudes of CKM elements and other well-defined theoretical parameters.
4. Perform detailed studies to elucidate the decay dynamics and spectroscopy of particles containing b or c quarks.
5. Perform studies of other accessible physics processes allowed by the broad acceptance of the BABAR trigger: τ-lepton physics, physics utilizing ISR processes (including R-related measurements at low energy), searches for new states such as pentaquarks, etc.

Publications: BABAR vs. Belle (published or submitted)

	BABAR	Belle
<2003	34	54
2003	47	28
2004 (June 1)	16	10
Total	97	92

- BABAR papers are labeled according to the date the paper goes into 2-week Collaboration Wide Review (CWR).
- At time of Jan IFC meeting: 75 (BABAR) vs. 77 (Belle).
- Analyses now in CWR or FN/FR: (1) $B \rightarrow f_{0} K_{S}$, (2) $B \rightarrow K^{*} \gamma$, (3) $B \rightarrow D^{*} l v$: Vcb, (4) $B \rightarrow \tau \nu,(5) B \rightarrow a_{0} X$ (charmless)
- Other papers nearing completion: (1) $\boldsymbol{B} \rightarrow \boldsymbol{K}_{2} *(1430) \gamma$, (2) $\boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)} \boldsymbol{D}_{s J}$, (3) $\boldsymbol{B} \rightarrow$ $J / \psi K \pi: \cos (2 \beta),(4) B \rightarrow D^{*} D^{*}$ and related modes
- GOAL: submit 100th paper by the July collaboration meeting!

Some recent physics highlights - June 2004

- $B \rightarrow \rho^{+} \rho^{-}: 1^{\text {st }}$ observation of mode; demonstrated that polarization is almost $\mathbf{1 0 0 \%}$ longitudinal $\rightarrow \mathbf{C P}=+1$, not a mix. (PRL accepted.)
- $B \rightarrow \rho^{+} \rho^{-}: 1^{\text {st }}$ time-dependent CP asymmetry: presented at La Thuile and Moriond. Since G-Q bound is $\mathbf{1 3}$ degrees, this measurement provides a much better constraint on α than $B \rightarrow \pi^{+} \pi^{-}$. Belle has not yet produced a branching fraction measurement. Submitted to PRL.
- $\boldsymbol{B} \rightarrow \boldsymbol{K}_{S} \pi^{0}: 1^{\text {st }}$ time-dependent $\mathbf{C P}$ analysis; β measurement using beam constraint to get \boldsymbol{B} vertex. Submitted to PRL.
- B $\rightarrow \boldsymbol{K}^{* 0}\left(\rightarrow K_{S} \pi^{0}\right) \gamma: 1^{\text {st }}$ time-dependent $\mathbf{C P}$ analysis of an electroweak penguin mode. Submitted to PRL.
- $B \rightarrow f_{0}(980) K_{S}: 1^{\text {st }}$ time-dependent CP analysis (β) and observation of new mode. PRL draft in Final Notice.
- B $\rightarrow J / \psi K \pi: 1^{\text {st }}$ ambiguity-free measurement of $\cos 2 \beta$ and strong phases using s-wave $K \pi$ interference with p-wave (K^{*}). Preliminary result presented at Moriond EW. PRD in progress.

Some recent research highlights - June 2004

- $\left|V_{c b}\right|$ from inclusive B decays, hadron spectrum moments, lepton spectrum moments: 2 PRDs accepted and 1 PRL submitted. Uncertainty on $\left|V_{c b}\right|$ is significantly reduced.
- $B \rightarrow \phi \boldsymbol{K}_{S}, \boldsymbol{B} \rightarrow \phi \boldsymbol{K}_{L}$: final Run 1-3 result, submitted to PRL
- $B \rightarrow K^{+} K^{-} K_{S}$ with $m\left(K^{+} K^{-}\right)$above the ϕ mass $(\sin 2 \beta$ measurement consistent with $\left.B \rightarrow \mathrm{~J} / \psi K_{S}\right)$. BABAR and Belle agree above the ϕ mass! PRL submitted.
- $\boldsymbol{B} \rightarrow \eta \omega(4.3 \sigma), \eta \eta, \eta \eta^{\prime}, \eta^{\prime} \eta^{\prime}, \eta \phi, \eta^{\prime} \omega, \eta^{\prime} \phi, \phi \phi:$ PRL submitted.
- $\boldsymbol{B} \boldsymbol{\rightarrow} \boldsymbol{D}(K \pi) \boldsymbol{K}($ Atwood Dunietz Soni method) -limit: submitted to PRL
- Observation of $X(3872)$ in $B \rightarrow X(3872) K$; presented at Moriond QCD, PRL in Final Notice.
- Observation of $\operatorname{DsJ}(2317)$ and $D s J(2460)$ in B decay. Presented at Moriond QCD. Several new modes observed. PRD in preparation.
- Angular analysis of $\boldsymbol{B} \rightarrow \phi \boldsymbol{K}^{*}$ preliminary result presented at Moriond. Mystery of the very low longitudinal polarization (52\%) compared to other $B \rightarrow V V$ modes. Will be updated with Run 4 before publication.

Current analysis status- June 2004

Research highlights, continued

- $\boldsymbol{B} \rightarrow \eta^{\prime}\left(\boldsymbol{K}^{*}, \rho, \pi^{0}\right)+(\omega, \phi) \pi^{0}:$ PRD submitted
- $B \rightarrow X_{s} l^{+} l$: PRL submitted
- B $\boldsymbol{B} \boldsymbol{X}_{s} \gamma$ direct $\boldsymbol{C P}$: PRL submitted
- $B \rightarrow K^{*} \gamma$ branching fractions and direct $C P$ search: PRL in Final Notice.
- $B \rightarrow a_{0}\left(K, K^{0}, \pi\right)$: now in CWR
- B $\rightarrow K^{0} \pi^{+} \pi^{-}:$preliminary result
- New results for APS! $\boldsymbol{B} \rightarrow p \boldsymbol{K} ; \boldsymbol{B} \rightarrow \omega \rho, \boldsymbol{K}^{*} \omega ; \boldsymbol{B} \rightarrow \phi \gamma ; \boldsymbol{1}^{\text {st }}$ results from pentaquark searches.

Other recent physics papers

- $\boldsymbol{B}^{+} \rightarrow \eta \pi^{+}, \eta \boldsymbol{K}^{+}, \boldsymbol{B}^{0} \rightarrow \omega \boldsymbol{K}^{0} \quad \mathbf{1}^{\text {st }}$ observations: accepted
- Color suppressed \boldsymbol{B} decays: $\boldsymbol{B} \rightarrow D^{* 0} \eta, D^{* 0} \omega, \boldsymbol{D}^{0} \eta^{\prime} \mathbf{1}^{\text {st }}$ observations: accepted
- B $\rightarrow J / \psi \eta K \quad 1^{\text {st }}$ observation: submitted
- $\Delta \Gamma$ and CPT limits from $B \rightarrow J / \psi K^{0}:$ PRL and PRD submitted
- $\sin (2 \beta+\gamma)$: inclusive \& exclusive $B \rightarrow D^{*} \pi: 2$ papers submitted
- $B \rightarrow p \bar{p}$ search accepted
- $\quad \tau \rightarrow 3$ leptons (limits): accepted (Belle paper followed)
- $\mathrm{D}_{\mathrm{s}}(\mathbf{2 4 5 8})$: accepted
- Mass and width of $\mathbf{Y}(\mathbf{4 S})$: submitted

BABAR Physics Planning Fall 2003/Winter 2004

CKM Angles, Recoil Workshops

Stage 1

AWGs, Conveners, PAC

- BAD 736

Review

Physics Advisory
Group

- BAD 780
τ, Vxb Workshops

Stage $2 \rightarrow$ BAIS

AWGs, Conveners
(many new), PAC

- Enter active \& summer 2004 analyses in BAIS

Spectroscopy workshop: charm, charmonium, pentaquarks

Fall Physics Harvest
AWGs, Conveners,
PAC, Pub Board

Winter Conference Prep

AWGs, Conveners, PAC, Pub Board, Speakers Bureau; see links on BABAR home page \& Physics page.

Physics Organization: Working Groups

Physics AWG	Conveners (new since Sep 03)
sin2ß/Mixing \& Lifetime	David Lange, Owen Long
B decays to charm final states (Breco)	Vivek Sharma, Wouter Verkerke
Charmonium	Enrico Robutti, Denis Bernard
Inclusive Hadronic B Decay (IHBD)	Abi Soffer, Sergey Ganzhur
Charmless 2 Body	Gianluca Cavoto, Carlo Dallapiccola
Charmless Quasi 2 Body	$\underline{\text { Jim Smith, Adrian Bevan }}$
Charmless 3 Body	$\underline{\text { Andreas Hoecker, Yibin Pan }}$
Radiative Penguin	$\underline{\text { Jeff Berryhill, Jim Libby }}$
Exclusive Semileptonic	Franco Simonetto, Robert Kowalewski
Inclusive Semileptonic	Riccardo Faccini, Vera Luth
Leptonic	Steven Robertson, Gregory Dubois-Felsmann
Charm	David Williams, Antimo Palano
Tau/QED	Mike Roney, Eric Torrence
Inclusive Hadronic Particle Spectra	Blair Ratcliff, David Muller

Tools Group	Conveners (new since Sep 03)
Generators	Abi Soffer
Particle ID	Thorsten Brandt, David Aston
Neutrals	Vincent Tisserand, David Payne
Tracking efficiency task force	Thomas Allmendinger
Tracking [in computing]	Wouter Hulsbergen
Tagging	David Lange, Gabriella Sciolla
Pentaquark Task Force	Pat Burchat, Valerie Halyo
Physics Software Manager	Chris Roat \rightarrow Chih-hsiang Chen
Data Quality Group Coordinator	Chris Hearty \rightarrow Walter Toki
Data Quality Group Deputy	Walter Toki \rightarrow David Hutchcroft
Publications Board (12 members)	Chair: G.H. Monchenault $\rightarrow \underline{\text { Robert Cahn }}$
Powerful physics organization	
- AWG Leadership has broad geographical base - Conveners: many leadership opportunties for postdocs - 21 new Physics/Tools Group conveners since Sept 03 - Formal links between Tools groups and Physics Groups	

Comments on Physics Productivity

- We are working to increase physics productivity even more:

PAC Champagne Challenges
\Leftrightarrow Maintain very strong emphasis on physics planning.
\leftrightarrow We are working towards making the review process more efficient, while maintaining the quality of our results.
\Leftrightarrow Steady stream of theorists interacting with physics analysis groups. Series of physics workshops to generate ideas and facilitate planning.
\Leftrightarrow New "interdisciplinary" meetings trermacross analysis working groups.

Data Quality Group

- In fall 2003, we greatly strengthened our effort to monitor and control data quality.
\& Have always had online data quality monitoring \& a small number of people looking at data quality offline.
\& Offline effort is now much larger (about 20 people) and has leadership from senior physicsists. Coordinated effort of Detector, Computing, and Physics organizations. This is essential, given how rapidly we take data.
- The DQG monitors several different data streams:
\& Run 4 data \& Run 4 reprocessing with final constants
\& Run 1-3 conversion to CM2
\& Trickle injection monitoring
\& Overall rates from physics skims
- Data quality protocol based on rapid data processing in Padova \& SLAC
\& Tues morning: run list up to Mon is defined
\& by Weds night: subsystem experts define individual bad run lists
$\&$ Thurs weekly meeting: define official good run list

Physics Analysis Database: new starting Jan 2004

OBAI	BaBar Analysis											
Le	Help Analysis Index Analysis Detailed Index Create new analysis entry Create new AWG											
Analysis index for all AWGs							Already has 235 analyses entered!				Sorin	
BAIS contains 235 analyses.												
I	Sort by: \& A Sort order: A As Select AWG: Any Select target publication period: Any Select target publication: Any Select target conference: Any	Analysis Selection \& Sort FormAWG Code \subseteq Publication Status \subseteq Analysis Name \subseteq Conference Status Ascending CDescending				Sorting and searching						
	Select target conference:	Access to supporting documentation and publication, review committees, data samples used, code releases used, status history.										
awg Code	Anawe Nome	$\substack{\text { Pumicaioon } \\ \text { Stauss }}$		$\substack{\text { Target } \\ \text { Joumal }}$	Conferene statas	$\underset{\substack{\text { Target } \\ \text { Conference }}}{\text { ater }}$	$\underbrace{}_{\substack{\text { Review } \\ \text { Comm. }}}$					
1 breceor201		PIB	303	PRL	aprovedinter	CP20						
2 brece-0202		Acc	403	probapm	Approviditimaal	${ }_{\text {Ipo3 }}$	${ }_{\text {comm3 }}^{\text {comos }}$					
3 3rece-0203		Ассер	403	PRL			${ }_{\text {comm }}^{\text {coma }}$					
4 treceor204		${ }_{\text {Accrer }}$	403	PRD								
Streceor20		Aссерт	303	${ }^{\text {prL }}$	aprovidititwal	Heprous	commil					

Physics Analysis Database：Info for one Analysis

Analysis name：link to details		k Working Group					
					code reosman	Tesersatame	nermemme
Namement	and		41	${ }^{p x}$		401	
2	边	\％	ar	mamin		man	
4	边		1×1	PII		，	
5lamexame	mbesace	\％	14	w	Mriozecor		
dameas $0^{3} 3$	＂10	\％		m			
7cmasasa	\％	\％	${ }^{203}$	Pa，med			
2mancons	Wruw	0		w／			
9，micatase	and	Acar	14	pas			
\％manam	atamed	（cast	$1 \times$	masme		400	
践		Wix	${ }_{20}^{104}$	mi			
Hommeat						\％ma	
	and		${ }^{\text {з }}$				
5lamem		＂un	${ }^{3}$			wor Expa	mes
	max	wiv	${ }^{3 \times 4}$			，	
${ }^{10}$ cmacesatas		\％	14	${ }^{380}$		war wry	
1 m minas ane	mandeme		${ }^{14}$	${ }^{p x}$		manceon	mameme
		manc	${ }_{204}^{104}$			anmm	mals
31 mamexates		vi	3	\％00		cump	
Cumatem			＊			camem	
	maman AmP	manc				（cmix	meme
21.	边		＊4			（catem	

Physics Analysis Database: Analyses in Final Stages

Physics Analysis Database: Info on an analysis

Data samples and code release

CP Violation Primer

- CP violation can be observed by comparing decay rates of particles and antiparticles

$$
\Gamma(a \rightarrow f) \neq \Gamma(\bar{a} \rightarrow \bar{f}) \quad \Rightarrow C P \text { violation }
$$

- The difference in decay rates arises from a different interference term for the matter vs. antimatter process. Analogy to double-slit experiment:

Classical double-slit experiment: Relative phase variation due to different path lengths: interference pattern in space
B system: extraordinary laboratory for quantum interference experiments: many final states, multiple "paths."

Conditions for CP violation

- Two amplitudes, A_{1} and A_{2}, with a relative CP-violating phase (ϕ_{2}) only.
- No CP violation: the magnitudes of A and A are the same!
- Two amplitudes, A_{1} and A_{2}, with both a relative CP-violating phase and CP-conserving phase $\left(\delta_{2}\right)$.
- Now have CP violation!

A dictionary of CP violating effects in decay processes

- CP violation in the interference between two decay amplitudes ("Direct CP violation")
\& Decay amps must have different CP violating and CP conserving phases.
\& CP conserving phase from strong, final-state interaction, so difficult to interpret results in terms of CKM parameters
\leftrightarrow Can measure in both $\mathbf{B}^{0} \overline{\mathbf{B}}^{0}$ and $\mathbf{B}^{+} / \mathbf{B}$ - decays (time-indep); tagging not needed
- CP violation in mixing
\& Interference is between bundle of amplitudes with on-shell (real) intermediate states and bundle of amplitudes for off-shell (virtual) intermediate states.
\& CP conserving phase from mixing
\& B mixing is completely dominated by processes with virtual intermediate states, so there is very little CP violation in mixing (\mathbf{q} / p).
- CP violating in the interference between mixing and decay amplitudes
\& Tagging required
\& CP conserving phase from mixing
\& If only one direct decay amplitude, has clean CKM interpretation

Looking for the perfect way to study CP violation

Type of CP violation	Sources of amplitudes	Source of CP conserving phase	Remarks
Direct	2 or more direct decay amplitudes	strong, final-state interactions; value is usually not known	Can study both neutral and charged particle decays.
CPv in particle- antiparticle oscillations $($ mixing $)$ $\left(\mathbf{K}^{0}-\overline{K^{0}}, \mathbf{B}^{0}-\overline{\mathbf{B}^{0}}\right)$	$\Delta \Gamma:$ group of amps with real intermediate states $\Delta \mathbf{M}:$ group of amps with virtual intermediate states	mixing phase: between real and virtual amplitudes	Dependence on theory. Very small in B system due to tiny $\Delta \Gamma$.
CP from interference between mixing $\&$ decays	direct decay after no net mixing and decay after mixing	phase in mixing: exactly known!	Interference pattern in time due to time- dependence of mixing amplitude.

In the SM, the CKM matrix is the only source of $C P$ violating phases.

Time-dependent $\mathbf{C P}$ asymmetries from the interference between mixing and decay

$$
\boldsymbol{A}_{1}=\boldsymbol{e}^{i p_{p}} \cos \left(\frac{1}{2} \Delta \boldsymbol{m} \cdot t\right)
$$

$$
\boldsymbol{A}_{2}=\boldsymbol{i} \boldsymbol{e}^{-2 i \varphi_{M}} \sin \left(\frac{1}{2} \Delta \boldsymbol{m} \cdot \boldsymbol{t}\right) \boldsymbol{e}^{-i \varphi_{D}}
$$

$$
\neq
$$

$$
\Gamma\left(B_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)
$$

$$
\Gamma\left(\bar{B}_{p h y s}^{0}(t) \rightarrow f_{C P}\right)
$$

Requires tagging and measurement of time dependence.
$\overline{\boldsymbol{A}}_{2}=\boldsymbol{i} \boldsymbol{e}^{+2 i \varphi_{M}} \boldsymbol{e}^{+i \varphi_{D}} \cdot \sin \left(\frac{1}{2} \Delta \boldsymbol{m} \cdot \boldsymbol{t}\right)$

Calculating the CP Asymmetry

$$
A_{f_{c P}}(t)=\frac{\left.\left.\left|\left\langle f_{C P}\right| H\right| \bar{B}^{0}(t)\right\rangle\left.\right|^{2}-\left|\left\langle f_{C P}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}}{\left.\left.\left|\left\langle f_{C P}\right| H\right| \bar{B}^{0}(t)\right\rangle\left.\right|^{2}+\left|\left\langle f_{C P}\right| H\right| B^{0}(t)\right\rangle\left.\right|^{2}}=\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)-\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow f_{C P}\right)+\Gamma\left(B^{0}(t) \rightarrow f_{C P}\right)}
$$

$$
\begin{array}{r}
A_{f_{C P}}(t)=S \cdot \sin (\Delta m \cdot t)-C \cdot \cos (\Delta m \cdot t) \\
S=\frac{2 \cdot \operatorname{Im}(\lambda)}{1+|\lambda|^{2}} \quad C=\frac{1-|\lambda|^{2}}{1+|\lambda|^{2}}
\end{array}
$$

If single direct-decay amp, hadronic matrix element divides out, leaving pure phase.

$\begin{array}{l}\text { Pure phase factor in B decays } \\ \text { since mixing is dominated by } \\ M_{12} \text { (virtual intermediate states). }\end{array}$	$\lambda=\sqrt{\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}}} \cdot \frac{\left\langle f_{C P}\right\| H\left\|\bar{B}^{0}\right\rangle}{\left\langle f_{C P}\right\| H\left\|B^{0}\right\rangle}$

$|\lambda|=1 \Rightarrow S=\operatorname{Im}(\lambda)$ and $C=0$

The magic of having just one direct decay amplitude

Even through we are using hadronic final states, the complexities of QCD interactions are completely avoided!

$$
|\lambda|=1 \quad A_{f_{C P}}(t)=\operatorname{Im}(\lambda) \cdot \sin (\Delta m \cdot t)
$$

For the modes $\boldsymbol{B} \rightarrow \boldsymbol{J} / \psi \boldsymbol{K}_{S}\left(J / \psi \boldsymbol{K}_{L}\right)$

$$
A_{J / \psi K_{S, L}^{0}}(t)=-\eta_{J / \psi K_{s, L}^{0}} \cdot \sin (2 \beta) \cdot \sin (\Delta m \cdot t)
$$

If CP violation is due to interference between mixing and one direct decay amp:

- Pure $\sin (\Delta m t)$ time dependence
- No dependence of asymmetry on hadronic physics

The Lorentz Boost

- The asymmetric beam energies of PEP-II allow us to measure quantities that depend on decay time.

Innermost Detector Subsystem: Silicon Vertex Tracker

The $\sin 2 \beta$ program: the charmonium benchmark vs. the penguins

- $\sin 2 \beta$ from $b \rightarrow c c s$ modes was last published by BABAR with Runs 1-2 (88 M BB events). Published in PRL, 89, 20182 (2002).
- We will add Runs 3-4 for ICHEP'04 and then publish. $\sin 2 \beta$ is becoming a precision measurement.
- We have also improved our tagging software, so there should be some modest additional improvement beyond the added statistics.
- Theory error $<\mathbf{1 \%}$.

$\sin 2 \beta$ signal and control Samples (88M BB)

$\sin 2 \beta$ from $B \rightarrow$ charmonium $K^{0}(\mathbf{8 8 M} \mathbf{B} \overline{\mathbf{B}})$

Testing the assumptions in the extraction of $\sin 2 \beta$ extraction from charmonium modes

- The extraction of $\sin (2 \beta)$ assumes
\& $\Delta \Gamma / \Gamma=0$ (no lifetime difference between neutral B mass eigenstates)
$\Leftrightarrow|q / p|=1$ (checked with dilepton CP asymmetry measurement.)
\leftrightarrow CPT is conserved

$$
|q / p|=0.998 \pm 0.006 \pm 0.007
$$

- We have performed a detailed study to check these assumptions:
\& 2 papers accepted: PRL and PRD

Quantity	Measured value	Theory
$(\Delta \Gamma / \Gamma) \operatorname{sgn}(\operatorname{Re} \lambda)$	$-0.008 \pm 0.037 \pm 0.018$	-0.2% to -0.3%
$\|q / p\|$	$1.029 \pm 0.013 \pm 0.011$	$\|q / p\|-1=(2.5-6.5) \times 10^{-4}$
$(\operatorname{Re} \mathbf{z})(\operatorname{Re}(\lambda) / \lambda \mid)$	$0.014 \pm 0.035 \pm 0.034$	0 if CPT conserved
$\operatorname{Im} \mathrm{z}$	$0.038 \pm 0.029 \pm 0.025$	0 if CPT conserved

$\rho-\eta$ plane with all constraints ($\sin 2 \beta$ not combined with others)

Determination of the sign of $\cos (2 \beta)$ with $B \rightarrow J / \psi(K \pi)$

- From $B \rightarrow J / \psi K_{s}$, we are used to seeing the $\sin (2 \beta) \sin \left(\Delta \mathrm{m}_{\mathrm{d}} \mathrm{t}\right)$ term.
- In $B \rightarrow \mathrm{~J} / \psi \mathrm{K}^{* 0}\left(\mathrm{~K}^{* 0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{0}\right)$, terms with $\cos (2 \beta) \sin \left(\Delta m_{d} t\right)$ appear due to interference between CP-even and CP odd amplitudes.
- Problem: there is a sign ambiguity associated with the strong phases!
- Solution

1. Measure magnitudes of strong phases from angular analysis
2. Signs of phases determined from $\mathrm{K} \pi$ s-wave/p-wave interference
3. t-dependent CP analysis \rightarrow excludes $\cos 2 \beta=-0.68 @ 89 \%$ C.L.

The next step for $\sin 2 \beta$: search for phases from new particles \& couplings in loop processes

Belle Results for $\boldsymbol{B} \boldsymbol{\rightarrow} \phi \boldsymbol{K}_{S}$

$$
\begin{aligned}
& S_{\phi K_{S}^{0}}=-0.96 \pm 0.50_{(\text {stat) })}+0.09 \\
& C_{\phi K_{S}^{0}}=+0.15 \pm 0.19_{(\text {ssat) })} \pm 0.07_{(\text {syst) })}
\end{aligned}
$$

BABAR results for $B \rightarrow \phi K_{S}, \phi K_{L}$ (Runs 1-3)

$$
S_{\phi K}=0.47 \pm 0.34 \text { (stat) }{ }_{-0.06}^{+0.08} \text { (sys) } C_{\phi K}=0.01 \pm 0.33 \text { (stat) } \pm 0.10 \text { (sys) }
$$

$B \rightarrow K^{+} K^{-} K_{S}$ and $B^{+} \rightarrow K^{+} K_{S} K_{S}$ branching fractions and CP asymmetry

－There is a substantial rate for $\mathbf{B} \rightarrow K^{+} K^{-} K_{S}$ for $\mathrm{M}\left(K^{+} K^{-}\right)$outside the ϕ mass region．
－The CP eigenvalue of the final state is not a priori known，but it can be measured from

$$
f_{\text {even }}=\frac{2 \Gamma\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)}{\Gamma\left(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}\right)}
$$

－For the non－ϕ region，

$$
f_{\text {even }}=0.98 \pm 0.15 \pm 0.04
$$

$$
B\left(B^{+} \rightarrow K^{+} K_{S}^{0} K_{S}^{0}\right)=(10.7 \pm 1.2 \pm 1.0) \times 10^{-6}
$$

$$
m_{E S}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)
$$

$\boldsymbol{B} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}$ time-dependent $\boldsymbol{C P}$ asymmetry

$S\left(K^{+} K^{-} K_{S}^{0}\right)=-0.56 \pm 0.25($ stat $) \pm 0.04(\text { syst })_{-0.17}^{+0} \quad\left(f_{\text {even }}\right)$
$C\left(K^{+} K^{-} K_{S}^{0}\right)=-0.10 \pm 0.19$ (stat) ± 0.09 (syst)

$$
(S \simeq-\sin 2 \beta \text { in } \mathrm{SM})
$$

$B \rightarrow f_{0}(980) K_{S}$ observation and CP asymmetry

Presented at Moriond EW. PRL now submitted. $\quad \mathbf{C P}\left(\mathbf{f}_{0} K_{s}\right)=+1 \quad \mathbf{C P}\left(J / \psi K_{s}\right)=-1$

$$
\begin{aligned}
& S_{f_{0} K_{S}^{0}}=-1.62_{-0.51}^{+0.56} \pm 0.09 \pm 0.04 \\
& C_{f_{0} K_{s}^{0}}=0.27 \pm 0.36 \pm 0.10 \pm 0.07
\end{aligned}
$$

$B \rightarrow f_{0}(980) K_{S}$ observation and CP asymmetry

- Branching fraction

$$
\mathcal{B}\left(B^{0} \rightarrow f_{0}(980) K^{0}\right) \times \mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=(6.0 \pm 0.9 \pm 0.6 \pm 1.2) \times 10^{-6}
$$

- $f_{0}(980)$ resonance parameters

$$
\begin{aligned}
m_{f_{0}} & =980.6 \pm 4.1 \pm 0.5 \pm 4.0) \mathrm{MeV} / c^{2} \\
\Gamma_{f_{0}} & =\left(43_{-9}^{+12} \pm 3 \pm 9\right) \mathrm{MeV} / c^{2}
\end{aligned}
$$

- Systematic errors
\leftrightarrow Dominant sys. errors on branching fraction: fit procedure (0.26), B background ($\mathbf{0 . 3 0}$), Q2B approx (1.21) in units of $\mathbf{1 0}^{-6}$.
\& Dominant sys. errors on S: fit procedure (0.06) and B background (0.05); Q2B approx is (0.04) so this does not dominate.
- Comments on S and C
$\Leftrightarrow S$ is 1.2σ from physical limit and is 1.7σ from SM ; no CP violation is excluded at 2.7σ
\& C is 0.8σ from $S M$

$B A B A R$ measurement of $\sin 2 \beta$ from $B \rightarrow K_{S} \pi^{0}$

- Special vertexing approach

The $\sin 2 \beta$ program: the charmonium benchmark vs. the penguins

The Quest for Alpha

- The angle α enters into the $\mathbf{C P}$ asymmetries for $\boldsymbol{b} \rightarrow \boldsymbol{u}$ modes:

$$
B \rightarrow \pi^{+} \pi^{-}, B \rightarrow \rho^{ \pm} \pi^{\mp}, B \rightarrow \rho^{+} \rho^{-}
$$

- Assuming the $\mathbf{b} \rightarrow \mathbf{u}$ tree diagram dominates

$$
\lambda_{\pi^{+} \pi^{-}}=e^{-i 2 \beta} \frac{\bar{A}_{\pi^{+} \pi^{-}}}{A_{\pi^{+} \pi^{-}}}=e^{-i 2 \beta} e^{-i 2 \gamma}=e^{i 2 \alpha}
$$

- But penguin amplitude is sizeable

$$
\lambda_{\pi^{+} \pi^{-}}=e^{i 2 \alpha} \frac{T+P e^{+i \gamma} e^{i \delta}}{T+P e^{-i \gamma} e^{i \delta}}
$$

Coping with penguins: isospin analysis

- Gronau-London isospin analysis: $\mathrm{J}=\mathbf{0}$ two-pion state has no $I=1$, so $B \rightarrow \pi \pi$ can be described in terms of two I-spin amplitudes.

$$
\begin{aligned}
& A^{+0}=A^{00}+\frac{1}{\sqrt{2}} A^{+-} \\
& \bar{A}^{+0}=\bar{A}^{00}+\frac{1}{\sqrt{2}} \bar{A}^{+-}
\end{aligned}
$$

- A^{+0} has no gluonic penguin
\rightarrow base is common to B^{+}and B^{-}
- Grossman-Quinn bound:

$$
\sin ^{2}\left(\alpha-\alpha_{\mathrm{eff}}\right) \leq \frac{\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)+\mathcal{B}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)+\mathcal{B}\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right)}
$$

- Useful if $\pi^{0} \pi^{0}$ is small.
- Does not require $\pi^{0} \pi^{0}$ events to be tagged since uses sum.

$B A B A R$ results related to α

- Intensive effort in BABAR to explore all modes that can constrain α. All of the following will be updated for ICHEP'04.

Mode	Comments
$B \rightarrow \pi^{+} \pi^{\text {- }}$ time-dependent CP asymmetry	BABAR $S=-0.40 \pm 0.22 \pm 0.03$ Belle observes $S=-0.19 \pm 0.19 \pm 0.0 .05$ $C=-0.58 \pm 0.21 \pm 0.07$ $C=0.15 \pm 0.07$
$B \rightarrow \pi^{0} \pi^{0}$ branching fraction	$1^{\text {st }}$ observation $>4 \sigma$; published in PRL $\left\|\alpha-\alpha_{\mathrm{eff}}\right\|_{\pi \pi} \leq 47^{0}(90 \%)$
$B \rightarrow \rho^{+} \pi^{-}, \rho^{-} \pi^{+}$time-dependent CP asymmetry	BABAR has only measurement
$B \rightarrow \rho^{+} \rho^{-}$branching fraction and polarization	$1^{\text {st }}$ observation; BABAR has only measurement; almost 100% long. pol. $\left\|\alpha-\alpha_{\mathrm{eff}}\right\|_{\rho \rho} \leq 19^{0}$ (90\%)
$B \rightarrow \rho^{+} \rho^{-}$time-dependent CP asymmetry $B \rightarrow \rho^{0} \rho^{0}$: limit only so far	BABAR has only measurement; currently is best α constraint

BABAR and Belle on $B \rightarrow \pi^{+} \pi^{-}$

- Belle observes a rather large negative value of $s_{\pi \pi}$.
- Another analysis to watch closely!

$266 \pm 24 \pi^{+} \pi^{-}$candidates

BABAR (Summer 2003)
$-0.40 \pm 0.22 \pm 0.03$

Belle (Winter 2003)
$-1.23 \pm 0.41 \pm 0.08$
ate

Observation of $\boldsymbol{B} \rightarrow \rho^{+} \rho^{-}$and polarization measurement

- From the BABAR Physics Book, 1998
\leftrightarrow At first glance, the decays $B \rightarrow \rho \rho$ appear to be completely analogous to $B \rightarrow \pi \pi$. However, there is an important difference. Because the ρ is a vector meson, the $\rho \rho$ pair can be in a state of angular momentum $L=0,1$, or 2. States of even and odd angular momentum correspond to states of even and odd CP, respectively...
- After discovering $B \rightarrow \rho^{+} \rho^{-}$, we measured the polarization

$$
\Gamma_{L} / \Gamma=0.98_{-0.08}^{+0.02} \pm 0.03
$$

\rightarrow Nearly pure CP even eigenstate!

Measurement of CP asymmetry in $\boldsymbol{B} \rightarrow \rho^{+} \rho^{-}$

$$
\begin{aligned}
& S_{\text {long }}=-0.19 \pm 0.33_{\text {stat }} \pm 0.11_{\text {syst }} \\
& C_{\text {long }}=-0.23 \pm 0.24_{\text {stat }} \pm 0.14_{\text {syst }}
\end{aligned}
$$

§ Main systematics: CPV in B bkg § Detailed study of B background: 209 B decay modes simulated

§ Isospin analysis: interference, NR contributions, I=1 amplitudes neglected

From L. Roos Moriond talk

Plots from CKM fitter group: I-spin analysis of $\mathbf{B} \rightarrow \rho^{+} \rho^{-}$

- Presented by Lydia Roos at Moriond EW

§ Constraint on α in perfect agreement with the Standard Fit;

$$
\alpha=\left(96 \pm 10_{\text {stat }} \pm 4_{\text {syst }} \pm 13_{\text {peng }}\right)^{n}
$$

Rare Decays: A Major Growth Industry

- BABAR has five separate analysis groups focussed on rare \mathbf{B} (or charm) decays. (τ group also looks at rare decays.)
\& rare hadronic decays ($\mathbf{3}$ groups), electroweak penguins, leptonic decays (discussed many hadronic rare decays earlier)
- We have pushed our sensitivity to the 10^{-6} level for many processes and even lower for some processes.
- Main goal is to search for effects of new physics in processes with Flavor Changing Neutral Currents (FCNC). Due to the presence of loops, such processes can be sensitive to new physics.
- Large industry of theoretical predictions for SM and SUSY models.
- Branching fractions, CP asymmetries, kinematic distributions, I-spin relations can all be affected by new physics.

Electroweak Penguins and Related Processes

- Rarest \mathbf{B} decay so far observed: $\mathbf{B} \rightarrow \mathbf{K} \boldsymbol{l}^{+} \boldsymbol{l}^{-}$

~8o significance
$\mathcal{B}\left(B \rightarrow K \ell^{+} \ell^{-}\right)=\left(6.5_{-1.3}^{+1.4} \pm 0.4\right) \times 10^{-7}$

Dilepton mass distribution

Electroweak Penguins and Related Processes

- So far, observations are in line with theoretical predictions.
- Some of the best observables are kinematic distributions which we are just beginning to have enough events to study.

Time-dependent $\mathbf{C P}$ asymmetry measurement for $\mathbf{B} \rightarrow \mathbf{K}^{* 0} \gamma ; \mathrm{K}^{* 0} \rightarrow \mathbf{K}_{\mathrm{s}} \pi^{0}$

- $\mathbf{1}^{\text {st }} \mathbf{t}$-dependent CP measurement for any radiative penguin process! Submitted to PRL.
- Uses same beam-constrained vertexing technique that we used for $B \rightarrow K_{S} \pi^{0}$.
- The photon helicity is a final state quantum number that is highly correlated with \mathbf{B} flavor. This tends to destroy the interference between mixing and decay, assuming SM couplings:

- In the SM

$$
S=2\left(m_{s} / m_{b}\right) \sin (2 \beta) \approx 4 \%
$$

- In some left-right symmetric extensions, S can be up to 50%. [Atwood, Gronau, and Soni, PRL, 79, 185 (1997)]
- With Run 1-3 data ($\mathbf{1 2 4} \mathbf{~ M ~ B B ~ e v e n t s) : ~}$

$$
\begin{aligned}
S_{K^{*} \gamma} & =0.25 \pm 0.63 \pm 0.14 \\
C_{K^{*} \gamma} & =-0.57 \pm 0.32 \pm 0.09
\end{aligned}
$$

Charmless B Branching Ratios

Physics with the Recoil Method

Fully reconstruct one B meson in the event.

The remaining particles in the event must be associated with the other B meson.

courtesy Daniele del Re
Xu
You have a single B beam!!

- Reconstruct B, D mesons in ~ 1000 modes: $B \rightarrow D^{(*)} \pi, D^{(*)} \pi \pi^{0}, D^{(*)} 3 \pi, \ldots$
- Efficiency $\sim 0.4 \%$ or ~ 4000 B mesons/fb ${ }^{-1}$ (charged and neutral)
- Will soon have $\sim 800 \mathrm{~K}$ events tagged with a fully reconstructed B meson

Measurement of $\left|V_{u b}\right|$ with inclusive semileptonic decays (but not restricted to lepton-endpoint region!)

Fit to the $m X$ distribution

Subtracted spectrum

$$
\begin{gathered}
B\left(B \rightarrow X_{u} N\right)=(2.24 \pm 0.27 \pm 0.26 \pm 0.39) \times 10^{-3} \\
\left|V_{u b}\right|=(4.62 \pm 0.28(\text { stat }) \pm 0.27(\text { sys }) \pm 0.48(\text { thy })) \times 10^{-3}
\end{gathered}
$$

Measurement of $\left|V_{c b}\right|$ from Inclusive Semileptonic Decay

- Three papers: 1 PRL and 2 PRDs accepted
- Study Lepton energy spectrum and mass spectrum of hadronic recoil system (below).

$$
\left\lvert\, \begin{array}{|ll|}
\left\lvert\, \begin{array}{|l}
\mid c b \\
\operatorname{Br}\left(B \rightarrow X_{c} e \mathrm{~V}\right) \\
m_{b}(1 \mathrm{GeV})
\end{array}\right. & =\left(41.4 \pm 0.4_{\exp } \pm 0.4_{\mathrm{HQE}} \pm 0.6_{\mathrm{th}}\right) \times 10^{-3} \\
m_{b}(1 \mathrm{GeV})-m_{c}(1 \mathrm{GeV}) & =\left(4.61 \pm 0.16_{\mathrm{exp}} \pm 0.06_{\mathrm{HOE}}\right) \% \\
\mu_{\pi}^{2} & \left.=0.05_{\mathrm{exp}} \pm 0.04_{\mathrm{HQE}} \pm 0.02_{\mathrm{th}}\right) \mathrm{GeV} \\
& =\left(0.45 \pm 0.03_{\mathrm{exp}} \pm 0.02_{\mathrm{HQE}} \pm 0.01_{\mathrm{th}}\right) \mathrm{GeV} \\
\mathrm{exp} & \left. \pm 0.04_{\mathrm{HQE}} \pm 0.01_{\mathrm{th}}\right) \mathrm{GeV}^{2} \\
\hline
\end{array}\right.
$$

Measurement of \boldsymbol{m}_{b} and $\boldsymbol{m}_{\boldsymbol{c}}$ from Inclusive Semileptonic Decay

Measurements and Predictions of the b-Quark Mass
(MS scheme) PDG2003

Measurements and Predictions of the c-Quark Mass
(MS Scheme) PDG2003

$$
\overline{\mathrm{m}}_{\mathrm{b}}\left(\overline{\mathrm{~m}_{\mathrm{b}}}\right)=4.22 \pm 0.06 \mathrm{GeV} \quad \boldsymbol{B} \boldsymbol{A} \boldsymbol{B} \boldsymbol{A} \boldsymbol{R} \quad \overline{\mathrm{~m}}_{\mathrm{c}}\left(\overline{\mathrm{~m}}_{\mathrm{c}}\right)=1.33 \pm 0.10 \mathrm{GeV}
$$

Conversion from kinetic mass scheme
to $\overline{\text { MS }}$ scheme with hep-ph/9708372, hep-ph/0302262
See also report from CKM WS hep-ph/0304132

Signals for new states

- Masses below DK threshold \rightarrow natural decay channel is forbidden.
- Decay widths are within experimental resolution, about 10 MeV .
- Pionic decays are I-spin violating, explaining the narrow observed widths.

Interpretation: $\overline{\mathbf{c s}}$ states with $l=1$

- In limit of infinitely heavy charm-quark mass, its spin decouples from the dynamics, so that the combined angular momentum j of the light-quark orbital and spin angular momentum is a good quantum number.
- For \mathbf{p}-wave states, get $\mathbf{j}=1 / 2$ and $\mathbf{j}=3 / 2$. These levels are split by the spin-orbit interaction. Hyperfine interactions mean that j is not truly a good quantum number.

Decay pattern for excited charm mesons

- The properties of the new states are consistent with $\boldsymbol{J}^{P}=0+$ and $\boldsymbol{J}^{P}=1+$.
- Pionic decays are I-spin violating, explaining the narrow observed widths.

Observation of $\boldsymbol{B} \rightarrow \boldsymbol{D}_{\text {sJ }} \boldsymbol{D}^{(*)}$ Modes

Presented by G. Calderini at Moriond QCD

	Decay Mode	Branching Fraction $\times 10^{3}$	
		this analysis	Belle [1]
I	$B^{0} \rightarrow D_{s J}^{*}(2317)^{+} \bar{D}^{-}\left[D_{s J}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0}\right]$	$2.09 \pm 0.40 \pm 0.34_{-0.42}^{+0.70}$	$0.86 \pm 0.26_{-0.26}^{+0.33}$
II	$B^{0} \rightarrow D_{s j}^{*}(2317)^{+} \bar{D}^{*-}\left[D_{s,}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0}\right]$	$1.12 \pm 0.38 \pm 0.20_{-0.22}^{+0.37}$	
III	$B^{+} \rightarrow D_{s,}^{*}(2317)^{+} \bar{D}^{0} \quad\left[D_{s J}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0}\right]$	$1.28 \pm 0.37 \pm 0.22_{-0.26}^{+0.42}$	$0.81 \pm 0.24_{-0.27}^{+0.30}$
IV	$B^{+} \rightarrow D_{s J}^{*}(2317)^{+} \bar{D}^{* 0}\left[D_{s J}^{*}(2317)^{+} \rightarrow D_{s}^{+} \pi^{0}\right]$	$1.91 \pm 0.84 \pm 0.50_{-0.38}^{+0.63}$	
V	$B^{0} \rightarrow D_{s j}^{*}(2460)^{+} \bar{D}^{-} \quad\left[D_{s,}^{*}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}\right]$	$1.71 \pm 0.72 \pm 0.27_{-0.35}^{+0.57}$	$2.27 \pm 0.68{ }_{-0.68}^{+0.73}$
VI	$B^{0} \rightarrow D_{s j}^{*}(2460)^{+} \bar{D}^{*-}\left[D_{s j}^{*}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}\right]$	$5.89 \pm 1.24 \pm 1.16_{-1.17}^{+1.96}$	-
VII	$B^{+} \rightarrow D_{s,}^{*}(2460)^{+} \bar{D}^{0}\left[D_{s,}^{*}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}\right]$	$2.07 \pm 0.71 \pm 0.45_{-0.41}^{+0.69}$	$1.19 \pm 0.36_{-0.49}^{+0.61}$
VIII	$B^{+} \rightarrow D_{s J}^{*}(2460)^{+} \bar{D}^{* 0}\left[D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{*+} \pi^{0}\right]$	$7.30 \pm 1.68 \pm 1.688_{-1.43}^{+2.40}$	-
IX	$B^{0} \rightarrow D_{s J}^{*}(2460)+\bar{D}^{-}\left[D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{+} \gamma\right]$	$0.92 \pm 0.24 \pm 0.11_{-0.19}^{+0.30}$	$0.82 \pm 0.25_{-0.19}^{+0.22}$
X	$B^{0} \rightarrow D_{s J}^{*}(2460)^{+} \bar{D}^{*-}\left[D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{+} \gamma\right]$	$2.60 \pm 0.39 \pm 0.34_{-0.52}^{+0.86}$,
XI	$B^{+} \rightarrow D_{s J}^{*}(2460)^{+} \bar{D}^{0}\left[D_{s J}^{*}(2460)^{+} \rightarrow D_{s}^{+} \gamma\right]$	$0.80 \pm 0.21 \pm 0.12_{-0.16}^{+0.26}$	$0.56 \pm 0.17_{-0.15}^{+0.16}$
XII	$B^{+} \rightarrow D_{s J}^{*}(\mathbf{2 4 6 0})^{+} \bar{D}^{* 0}\left[D_{s J}^{*}(\mathbf{2 4 6 0})^{+} \rightarrow D_{s}^{+} \gamma\right]$	$2.26 \pm 0.47 \pm 0.43_{-0.44}^{+0.74}$	-

[1] PRL 91, 262002 (2003)

Statistics based on $112.5 \mathrm{fb}-1\left(124 \times 10^{6} \mathrm{BB}\right)$

from G. Calderini Moriond talk

Plans for ICHEP'04

Run 4 is on track...

Run 4 goal

PEP-II/BABAR integrated luminosity and summer data samples

Key analyses for Run4/Summer 2004

BLACK DIAMOND (data up to mid-July)

$\Leftrightarrow \sin 2 \beta$ from charmonium
\& $B \rightarrow \pi^{+} \pi^{-}$(incl. $\left.K^{+} \pi^{-}, K^{+} K^{-}\right)$
\& $\boldsymbol{B} \rightarrow \phi \boldsymbol{K}_{S}$
\& one more from list below?
BLUE SQUARE (data up to mid-June)
4) $\boldsymbol{B} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-} \boldsymbol{K}_{S}$
4) $B \rightarrow K_{S} \pi^{0}$
\& $B \rightarrow f_{0} K_{S}$
\& $\boldsymbol{B} \rightarrow \eta^{\prime} \boldsymbol{K}_{S}$
\& $B \rightarrow \rho^{0} K_{S}$
4 $B \rightarrow \rho^{+} \rho^{-}$
$\Leftrightarrow B \rightarrow \rho^{+} \pi^{-}$Dalitz
\& $B \rightarrow \pi^{0} \pi^{0}$
$\Leftrightarrow B \rightarrow \rho^{0} \rho^{0}$
↔ $\boldsymbol{B} \rightarrow \phi \boldsymbol{K}^{*}$ angular analysis

GREEN CIRCLE (data up to May 1)

\& $\mathrm{B} \rightarrow D^{*} D^{*} \mathbf{C P}(\mathrm{t})$ [Full reco \& incl $\left.\mathrm{D}^{*}\right]$
$\Leftrightarrow B \rightarrow J / \psi K \pi \quad \cos (2 \beta) \mathbf{C P}(\mathrm{t})$
\& $\boldsymbol{B} \rightarrow \pi^{+} \pi^{0}, \mathrm{~K}^{+} \pi^{0}$
$\Leftrightarrow \boldsymbol{B} \rightarrow \mathrm{K}^{+} \mathrm{K}^{0}, \mathrm{~K}^{0} \pi^{+} ; \boldsymbol{B} \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}$
4) $\boldsymbol{B} \boldsymbol{\rightarrow} \boldsymbol{h}^{+} \boldsymbol{h}^{-} \boldsymbol{h}^{0}$ Dalitz
$\Leftrightarrow \quad B \rightarrow K_{S} \pi^{0} \gamma \quad \mathbf{C P}(\mathbf{t})$
$\Leftrightarrow B \rightarrow \rho \gamma$
4) $\mathrm{B} \rightarrow \mathrm{K}^{*} l^{+} l^{-}$
\& $\boldsymbol{B} \rightarrow D^{*} \pi$: $\mathbf{C P}(\mathbf{t}), \sin (2 \beta+\gamma) \quad[$ full $\&$ partial D*]; Tag side CPV
4) $B \rightarrow D^{0}(C P-) K^{-}$
\& $B \rightarrow D(K \pi) K(A D S)$
\& $B \rightarrow D^{0}$ (3 body) $K^{-} \quad$ Dalitz (?)
\& $B \rightarrow D \rho(?)$
\& $\boldsymbol{B} \rightarrow \boldsymbol{D}_{s}(*)\left(\rho, \boldsymbol{a}_{1}\right)$

There are no longer just 3-4 "key" analyses!

Analyses Targeted for ICHEP '04 (I)

	AWG Code	Analysis Name.	Publication 5 tarus	Taxget Puh Purind	Target Joursal	Conference Status	Target Canfereme	Reriew Commt	\triangle
	bexese.0206		AWGEC	204		AFPEOVEDAETERHAL	[CHEPO4		
	hrase -0207	BF and $A \subset P$ of E- bo Dro K.	A WGIE	2704			DCHEPD4	mestrnas	
	hate-0303	Todv of B -to DOCAP-) E .	$\triangle \mathrm{SCO}$	3×04			[CFEPPO4		
	hese-0304	todvof' 5 [8* ${ }^{\text {a }}$	AWGEC	3104			[CHEPO4	cormull?	
	hase-0308		AxCO	3104			TCFEPO4		
6	bresa		2WGEC	2.104			D.EHEPO4	mamliz [[1N23]	
	breas 0301		AWCHE	3704			TCHEPD4	cormul3	
8	kexas -03n2	Datitz sushryis of B to DO (3-bocty K.	AWG	3704			CHEP ${ }^{\text {O }}$		
9	hesee.00016		axg	3104			[CHEP04		
to	hrasa 04003		AW5	3104			DCHEPD4		
11	brace 040405		A_{WF}	3704			DCHEPD4		
12	breeo 0406	\$0 to De Dr_{6}	Plermed	3104			DCHEPD4		
13	hreea 04008	\# to DPMp phar pi	AW5	3704			DCHEPT4		
14	Chamm-0201	2mikotoni- Chum Mivies	A WGGAC	1.04	PRD-FAFID		TCFEPO4	cormi25	
1.5	Chanes 020.02		EC-EIC	9104	PRL		CHEPO4		
16	Chanem 02008	Saerele for CP violation in $\mathrm{D}+\rightarrow \mathrm{K}+\mathrm{K}-\mathrm{T}_{2}+$	EC-EEP	204	PRD-EAFID		[CHEPO4		
17	Chane 03002	Dinadiative	amb	204	PRD		[CHEPO4	cammas	
18	Clamm-0304	x.	A WG	304	PED		[CFEPO4		
19	Chanm-0308	Stadr of Xi - ${ }_{\text {c }}$	AxC	4104	PRD		[CFEPPO4		
30	Chanm-0310	Lembla CChito 2apenseed braxching fretione	RC-EEC	3004	PED		[CFEPO4		
21	Chanm-0312	Anach for Do-xtun alum	\triangle PGGC	3104	PRL		TCFEPO4	cermem 52	
2_{2}	Clamens.0901	Camak for B0 \rightarrow Tri Gamma	AWGAC	204	PRED-EAFID		[CHEPO4	comml24 [1]:05]	
23	Clamenow 0360		AW0	3.04	PED		TCFEPO4		
24	Chanum CS.03		FSC-FEQ	3×04	PEL		[CFEEPO4		
25	Clamenon-03,04	cauck bos $B=2 \mathrm{SX} . \mathrm{X} \Rightarrow$ abow XRS	ATMG	3 M 4	PREL		[CFEPO4		
26	Chammerces	Tacible Channonuman Practiction ymom 20.58 ct ?	AWGEC				DCHEPT4	mamula	
27	Clanmon.0311	Suack for Fortoration Ruponeens chars B basom	$A x^{2}$	304	PRL		TCFEPO4		
28	Clamuon OS312	chanmosis on the weosil of s. 5		3104	PEL		[CFEEPO4		
2	Cbarmer Com 4	for exchoive Hibearp to charmanium fimul states	$A W$	3704	PRL		DCHEPD4		
50	Clasmen 04.03		A F_{5}	4104	PRL		TCFEPO4		
31	Cham1/2-0001		Staitod	9104	PEL		CHEPO4	esmon 4	
32	Clumlezt 01.01		A BC	3014	PRL		DCHEPT4	memaml4	
33	Clumbentuass		Stastel	304	PRL		WCHEPT4	monaml4	-
-1		Document: Done							2

Analyses Targeted for ICHEP＇04（II）

33	Chums2b－03，03		Started	3.04	PRL		ICHEP＇04	comml4		\triangle
34	Chmls2b－04，01	B＋－＞ $\mathrm{h}+$ pio BF and ACP	AWG	3.04	PRL		ICHEP＇04	comml4		
35	Chums2b－04，02	B \rightarrow KS pio time dep analysis	Started	3.04	PRL	APPROVEDINTERNAL	ICHEP＇04	comml00		
36	Chmulsb－0001	Analysis of B＋－＞pippi－pi＋（Dalitz）	AWG	4,04	PRL		ICHEP＇04			
37	Chmls $56-0201$	CP（t）in BO 0 －shot－pi－＋（Dalitz）	AWG	4,04	PRL		ICHEP＇04			
38	Chums3b－03，02	BF and $\mathrm{CP}(\mathrm{t})$ in $\mathrm{BO}->$ rho $0 \mathrm{KS}(\mathrm{O} 2 \mathrm{~B})$	AWGRC	2.04	PRL		ICHEP＇04	comm123［HN15］		
39	Chmls $36-03.05$	BFs and Acp ＇s in $\mathrm{BO} \rightarrow \mathrm{O}+\mathrm{p}+$ pi－pil（full Dalitz）	AWG	4,04	PRL		ICHEP＇04			
40	Chums3b－03，06	$\frac{B F \text { and } A c p \text { in }}{B+\rightarrow K^{*}+\left(-\rightarrow K^{+}+p i 0\right) p i 0}$	AWGRC	2.04	PRL		ICHEP＇04	comml26［HN15］		
41	Chums3b－03，07	BFs and Acp in $\mathrm{B}+\rightarrow$ rho $+\mathrm{KO}_{\mathrm{O}}$ s and $\mathrm{B}+\rightarrow \mathrm{K}^{*}+\mathrm{pi} \mathrm{O}(\mathrm{Q} 2 \mathrm{~B})$	AWG	2,04	PRL		ICHEP＇04			
42	Chmls36－03／08	Analysis of $\mathrm{B}+\rightarrow>\mathrm{K}+\mathrm{pi}-\mathrm{pi}+$（Dalitz）	AWG	4,04	PRL		ICHEP＇04			
43	Chums36－03，09	$\mathrm{CP}(\mathrm{t})$ and BF in $\mathrm{BO} \rightarrow>\mathrm{KSKSKS}$	AWG	4,04	PRL		ICHEP＇04			
44	Chmus3b－03／10	Study of CP violating asymmetry in B to three kaon final states with KI	AWG	4.04	PRL		ICHEP＇04			
45	Chmls36－04／01	CP（t）in phiKS／KL	AWG	4,04	PRL		ICHEP＇04	comml36		
46	Chums 3b－04／02	CP（t）and BF in $\mathrm{BO} \rightarrow>\mathrm{K}+\mathrm{K}-\mathrm{KL}$	AWG				ICHEP＇04			
47	Chonls3b－04，03	$\mathrm{CP}(\mathrm{t})$ and BF in $\mathrm{K}+\mathrm{K}-\mathrm{KS}$（excl． phiKS）－Rum 4 update	Started				ICHEP＇04			
48	Chums $36-04 / 04$	$\mathrm{CP}(t)$ and BF in $\mathrm{BO} \rightarrow \mathrm{FO}(980) \mathrm{KO}$－ Ram 4 update	Started				ICHEP＇04			
49	Chums $36-04,05$	Analysis of $\mathrm{B}+\rightarrow>\mathrm{K}+\mathrm{K}-\mathrm{K}+$（Dalitz）	AWG				ICHEP＇04			
50	Chumb3b－04／06	$\mathrm{CP}(\mathrm{t})$ in PhiKSKKL	AWG				ICHEP＇04	comml36［HN15］		
51	ChunlSQ2b－04，01	phiK＊	CWR	3.04		APPROVED／CONF	ICHEP＇04	comml19		
52	ChmlsQ2b－04，02	rho0 rho0 search＇04	AWGRC	3.04			ICHEP＇04	comml21		
53		phiphiK	AWG	3.04			ICHEP＇04			
54	ChmulsQ2b－04，08	K＊0rhotetc	RC－REQ	2,04			ICHEP＇04			
55	ChmulsQ2b－04，09	fhotrho－（CP）ruml－4	AWG	3.04	PRD		ICHEP＇04			
56	ChmlsQ2b－04／10	alpi K	AWGRC	4,04			ICHEP＇04	comml37		
57	ChmlsQ2z－04／11	eta＇K0s rum 4 update	AWGRC				ICHEP＇04	comml39		
58	ChmlsQ2b－04／12	BR and Acp of etapi K ，omeza and eta＇piK		4,04			ICHEP＇04			
59	ExclSL－0201	Form Factors in $\mathrm{BO} \rightarrow \mathrm{D}^{*}+1$－yubar decay	AWGRC	3.04	PRD		ICHEP＇04	comm79［HN11］		
60	ExclSL－02，02	Exchsive semileptonic b－ヶu using neutrino reconstruction	AWG	3.04	PRD－RAPID		ICHEP＇04			
61	ExclSL－0204	Ycb from $\mathrm{BO}->\mathrm{D}^{*} \mathrm{l}$ v decars	CWR	2.04	PRD－RAPID		ICHEP＇04	comm75［HN11］		
62	ExclSL－03．01	$\begin{aligned} & \text { B-> pil rus on the recoil of } \\ & \text { semileptonic B reco } \end{aligned}$	AWG	3.04	PRD－RAPID		ICHEP＇04			
63	ExclSL－0303	$\begin{aligned} & \text { T violation in } B 0 \rightarrow D^{*}-1+201 \\ & \text { decavs } \end{aligned}$	AWG	3.04	PRL		ICHEP＇04			
64	ExclSL－0304	B－spi－l＋v on the recoil of partially reconstructed BO	AWG	4.04			ICHEP＇04			
65	ihbd－02／02	B mixins with $\mathrm{B} \rightarrow \mathrm{¢}$ D＊ lm	AWGRC	3.04	PRL		ICHEP＇04	commlll［H09		
66	ihbd－02，03	BR（Dst－－sphipit）	AWGRC	3.04	PRL		ICHEP＇04	comm78［HN13］		
67	ihbd－0204	$\begin{aligned} & \mathrm{BRR}(\mathrm{Ups}(4 \mathrm{~S}) \rightarrow \mathrm{BOBObar}) \text { with } \\ & \mathrm{B} \rightarrow \mathrm{D} * \ln \mathrm{~lm} \end{aligned}$	AWG／RC	2,04	PRL		ICHEP＇04	comm81［HN73］		\checkmark
戒 $=0$		ocument：Done						沣襱	（0）	

Analyses Targeted for ICHEP '04 (III)

Document: Dore

Conclusions

- BABAR physics productivity is very high: we are producing 40-50 papers/year. The collaboration is extremely enthusiastic about our physics program.
- The remarkable performance of PEP-II is creating a wealth of new physics opportunities, and there are about 200 active physics analyses. Most of them are performed by small groups, providing opportunities for graduate students and postdocs.
- We and our colleagues in Belle have significantly expanded the set of hadronic penguin modes used for $\sin 2 \beta$ measurements. Such modes provide a promising way to search for new physics.
- We are making significant progress in the measurement of α, a major goal in heavy-quark physics.
- We are exploring a vast territory of rare decays. This area is a major part of our physics program that is a window on new physics.

Conclusions, continued

- Due to BABAR's open trigger, which is characteristic of $\mathrm{e}^{+} \mathrm{e}^{-}$ experiments, we are able to study a huge number of processes and to make discoveries in unexpected areas. The discovery of the new charm-strange states is just one example.
- We have used a variety of approaches that enable us to pursue measurements previously considered impossible. We are using these methods to improve the precision on the magnitudes of CKM elements, and we are determining key QCD parameters that characterize B-meson decays.
- Nearly all of our measurements are statistics limited. We need the DOE's continued strong support for the B factory to realize the huge potential of this program.

