

Enriched Xenon Observatory for double beta decay

Z.Djurcic, D.Leonard, A.Piepke Physics Dept, University of Alabama, Tuscaloosa AL P.Vogel Physics Dept Caltech, Pasadena CA A. Bellerive, M. Dixit, C. Hargrove, D. Sinclair Carleton University, Ottawa, Canada W.Fairbank Jr., S.Jeng, K.Hall Colorado State University, Fort Collins CO

M.Moe

Physics Dept UC Irvine, Irvine CA

D.Akimov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Kovalenko, D.Kovalenko, G.Smirnov, V.Stekhanov ITEP Moscow, Russia

J. Farine, D. Hallman, C. Virtue

Laurentian University, Canada

M.Hauger, F.Juget, L.Ounalli, D.Schenker, J-L.Vuilleumier, J-M.Vuilleumier, P.Weber Physics Dept University of Neuchatel, Neuchatel Switzerland

M.Breidenbach, R.Conley, C.Hall, A.Odian, C.Prescott, P.Rowson, J.Sevilla, K.Skarpaas, K.Wamba, SLAC. Menlo Park CA

E.Conti, R.DeVoe, G.Gratta, M.Green, T.Koffas, R.Leon, F.LePort, R.Neilson, Y.Uchida, S.Waldman, J.Wodin Physics Dept Stanford University, Stanford CA

Last decade: the age of v physics

Discovery of v flavor change

- Solar neutrinos (MSW effect)
- Reactor neutrinos (vacuum oscillation)
- Atmospheric neutrinos (vacuum oscillation)
- K2K (vacuum oscillation)
- Loose ends: LSND/Karmen/miniBoone
- So, assuming miniBoone sees no oscillations, we know that:
- v masses are non-zero
- there are 2.981±0.008 v (Z lineshape)
- 3 v flavors were active in Big Bang Nucleosynthesis

Yet, we still do not know: - the neutrino mass scale - the choice of mass hierarchy

These *experimental* problems take a central place in the future of Particle Physics

Double-beta decay:

a second-order process only detectable if first order beta decay is energetically forbidden

Candidate nuclei with Q>2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
$^{110}Pd \rightarrow ^{110}Cd$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

There are two varieties of $\beta\beta$ decay

2v mode: a conventional 2nd order process in nuclear physics

Several new particles can take the place of the virtual v But Ovßß decay always implies new physics

Background due to the Standard Model $2\nu\beta\beta$ decay

Summed electron energy in units of the kinematic endpoint (Q)

from S.R. Elliott and P. Vogel, Ann.Rev.Nucl.Part.Sci. 52 (2002) 115.

The only effective tool here is energy resolution

If $0v\beta\beta$ is due to light v Majorana masses

$$\left\langle m_{\nu}\right\rangle^{2} = \left(T_{1/2}^{0\nu\beta\beta} G^{0\nu\beta\beta}(E_{0},Z) \left| M_{GT}^{0\nu\beta\beta} - \frac{g_{V}^{2}}{g_{A}^{2}} M_{F}^{0\nu\beta\beta} \right|^{2} \right)^{-1}$$

 $M_F^{0
uetaeta}$ and $M_{GT}^{0
uetaeta}$ can part $G^{0
uetaeta}$ a kn $T_{1/2}^{0
uetaeta}$ is the

can be calculated within particular nuclear models

a known phasespace factor

is the quantity to be measured

$$\langle m_{v} \rangle = \left| \sum_{i=1}^{3} U_{e,i}^{2} m_{i} \mathcal{E}_{i} \right|$$

effective Majorana v mass ($\varepsilon_i = \pm 1$ if CP is conserved)

Cancellations are possible ...

EXO - SLAC Program Review

Present Limits for Ov double beta decay

Candidate	Detector		Present	<m> (eV)</m>
nucleus	type	(kg yr)	T _{1/2} ^{0νββ} (γr)	
⁴⁸ Ca			>9.5*10 ²¹ (76%CL)	
⁷⁶ Ge	Ge diode	~30	>1.9*10 ²⁵ (90%CL)	<0.39 ^{+0.17} -0.28
⁸² Se			>9.5*10 ²¹ (90%CL)	-0.20
¹⁰⁰ Mo			>5.5*10 ²² (90%CL)	
¹¹⁶ Cd			>7.0*10 ²² (90%CL)	
¹²⁸ Te	TeO2 cryo	~3	>1.1*10 ²³ (90%CL)	
¹³⁰ Te	TeO2 cryo	~3	>2.1*10 ²³ (90%CL)	<1.1 - 2.6
¹³⁶ Xe	Xe scint	~10	>1.2*10 ²⁴ (90%CL)	<2.9
¹⁵⁰ Nd			>1.2*10 ²¹ (90%CL)	
¹⁶⁰ Gd			>1.3*10 ²¹ (90%CL)	

Adapted from the Particle Data Group 2003

Main challenge in Ovßß decay

Very large fiducial mass (tons) need large-scale isotopic enrichment Reduce and control backgrounds in qualitatively new ways existing experiments are already background limited, unlikely to gain big factors without new techniques

For no background $\langle m_{\nu} \rangle \propto 1 / \sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1 / \sqrt{Nt}$

For a background $\langle m_{\nu} \rangle \propto 1/\sqrt{T_{1/2}^{0\nu\beta\beta}} \propto 1/(Nt)^{1/4}$ scaling like Nt

Need 2) to fully utilize 1) and make a worthwhile experiment

Jun 2, 2004

EXO - SLAC Program Review

Xe is ideal for a large experiment

- No need to grow crystals
- •Can be re-purified during the experiment
- •No long lived Xe isotopes to activate
- •Can be easily transferred from one detector to another if new technologies become available
- •Noble gas: easy(er) to purify
- •136Xe enrichment easier and safer:
 - noble gas (no chemistry involved)
 - centrifuge feed rate in gram/s, all mass useful
 - centrifuge efficiency ~ Δm . For Xe 4.7 amu
- ¹²⁹Xe is a hyperpolarizable nucleus recently FDA approved for lung NMR tomography...
 a joint enrichment program ?

Xe offers a qualitatively new tool against background: ¹³⁶Xe → ¹³⁶Ba⁺⁺ e⁻ e⁻ final state can be identified using optical spectroscopy (M.Moe PRC44 (1991) 931)

Ba⁺ system best studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980) Very specific signature "shelving" Single ions can be detected from a photon rate of 10⁷/s

•Important additional constraint •Huge background reduction

The Ba-tagging, added to a conventional Xe TPC rejection power provides the tools to develop a background-free next-generation ßß experiment

Energy resolution is still an all-important parameter to disentangle the 0vββ mode from 2vββ

Fiducial mass between 1 and 10 tons, of ¹³⁶Xe at 80% depending on the status of the field when we finalize the design

Prototype LXe chamber for 200 kg of 80% ¹³⁶Xe under construction

EXO neutrino effective mass sensitivity

Assumptions:

- 1) 80% enrichment in 136
- 2) Intrinsic low background + Ba tagging eliminate all radioactive background
- Energy res only used to separate the Ov from 2v modes: Select Ov events in a ±20 interval centered around the 2.481MeV endpoint
- 4) Use for $2\nu\beta\beta T_{1/2} > 1 \cdot 10^{22}$ yr (Bernabei et al. measurement)

Case	Mass (ton)	Eff. (%)	Run Time (yr)	σ _E /E @ 2.5MeV (%)	2vββ Background (events)	T _{1/2} ^{0v} (yr, 90%CL)	Majora (m QRPA [‡]	ina mass ieV) (NSM)#
Conserva tive	1	70	5	1.6*	0.5 (use 1)	2*10 ²⁷	33	(95)
Aggressi ve	10	70	10	1†	0.7 (use 1)	4.1*10 ²⁸	7.3	(21)

* σ(E)/E = 1.6% obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201
 * σ(E)/E = 1.0% considered as an aggressive but realistic guess with large light collection area

[†] QRPA: A.Staudt et al. Europhys. Lett.13 (1990) 31; Phys. Lett. B268 (1991) 312 [#] NSM: E.Caurier et al. Phys Rev Lett 77 (1996) 1954

A LXe detector more elegant BUT technology needs testing \rightarrow prototype detector

Very small detector (3m³ for 10tons)
Need good E resolution
Position info but blobs not resolved
Readout Xe scintillation
Can extract Ba from hi-density Xe
Spectroscopy at low pressure:
1³⁶Ba (7.8% nat'l) different signature from natural Ba (71.7% ¹³⁸Ba)
No guencher needed, neutralization done outside the Xe

```
High Pressure gas TPC backup technology

•20 atm, 35 m<sup>3</sup> modules, 4.2 ton/module, 2 modules

•Xe enclosed in a non-structural bag

• \beta range ~5cm: can resolve 2 blobs

•2.5m e-drift at ~250kV

•Readout Xe scintillation with WLSB (TO)

•Additive gas: quenching and Ba<sup>++</sup> \rightarrow Ba<sup>+</sup> neutralization

•Steer lasers or drift Ba-ion to detection region
```

RåD status

- •Single ion Ba⁺ tagging at different residual Xe pressures
- ·LXe energy resolution
- Xe purification for long e⁻ lifetime
 - •Xe radiopurity
 - $\boldsymbol{\cdot} Ba$ ion lifetime and grabbing from LXe
 - Single ion Ba tagging in directly LXe
- Orift velocity of Ba⁺ in LXe
- Procurement/qualification of low background materials
- Isotopic enrichment of large amounts of ¹³⁶Xe
 - •Construction/operation of 200 kg ¹³⁶Xe prototype detector

Achieved

EXO spectroscopy lab

First in vacuum: photo of a Ba ion

S/N~100 even with a CW measurement !

Millikan experiment with ions in vacuum

Now we introduce gas

First He...

...and then Xe

Fishing ions in LXe

Initial Ra/Th ion grabbing successful

As expected release from a finite size metallic tip is challenging

Jun 2, 2004

Pancake shaped 1liter LXe ionization chamber to test energy resolution Good acceptance to scintillation light AND ionization

Energy resolution in LXe

Found a clear (anti)correlation between ionization and scintillation

E.Conti et al. Phys Rev B 68 (2003) 054201

EXO - SLAC Program Review

Have demonstrated that we can get sufficient energy resolution in LXe to separate the 2v from the Ov modes

Jun 2, 2004

EXO - SLAC Program Review

LXe purity with recirculation, May 17-25

Keeping our Xenon clean...

200 kg prototype LXe detector

- Full test of low background LXe technology
- Largest ββ detector ever built
- No Ba tagging (being developed in parallel)
- ~60 liters enriched liquid ¹³⁶Xe,
 - In low background teflon vessel
 - Surrounded and shielded by ~50 cm radially low background thermal transfer fluid
 - Contained in a low background Cu double walled vacuum insulated cryostat
 - Shielded by ~ 5 cm very low background Pb
 - Further shielded by ~20 cm low background Pb
 - Located ~800 m below ground in NaCl deposit WIPP in Carlsbad, New Mexico
- Detector is a liquid TPC with photo-detectors to provide start time and improve energy resolution of the β's.

Will measure the 2v mode in ¹³⁶Xe

2vββ decay has never been observed in ¹³⁶Xe. Some of the lower limits on its half life are close to (and in one case below) the theoretical expectation.

	T _{1/2} (yr)	evts/year in the 200kg prototype (no efficiency applied)
Experimental limit		
Leuscher et al	>3.6·10 ²⁰	<1.3 M
Gavriljuk et al	>8.1·10 ²⁰	<0.6 M
Bernabei et al	>1.0·10 ²²	<48 k
Theoretical prediction		
QRPA (Staudt et al) [T _{1/2} ^{max}]	= 2 .1 · 10 ²²	=23 k
QRPA (Vogel et al)	= 8.4 · 10 ²⁰	=0.58 M
NSM (Caurier et al)	(=2.1·10 ²¹)	(=0.23 M)

The 200kg EXO prototype should definitely resolve this issue

Jun 2, 2004

EXO - SLAC Program Review

EXO 200kg prototype mass sensitivity

Assumptions:

- 1) 200kg of Xe enriched to 80% in 136
- 2) $\sigma(E)/E = 1.6\%$ obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201
- Low but finite radioactive background:
 20 events/year in the ±2σ interval centered around the 2.481MeV endpoint
- 4) Negligible background from $2\nu\beta\beta$ ($T_{1/2}>1\cdot 10^{22}$ yr R.Bernabei et al. measurement)

Case	Mass (ton)	Eff. (%)	Run Time	σ _E /E @ 2.5MeV	Radioactive Background	T _{1/2} ^{0v} (yr,	Majora (e	ina mass eV)
			(yr)	(%)	(events)	90%CL)	QRPA	(NSM)
Prototype	0.2	70	2	1.6*	40	6.4*10 ²⁵	0.18	(0.53)

What if Klapdor's observation is correct ?

Central value <m>=0.44 eV, ±3σ range (0.24eV - 0.58eV) (Phys. Lett. B 586 (2004) 198-212)

In 200kg EXO, 2yr would observe 57 events (QRPA) on top of 40 events bkgd

Using lower bound (0.24 eV) would have 17.3 signal events (and 40 bkgd), a 2.3 σ effect

Massive materials qualification program (Alabama, Carleton, Laurentian and Neuchatel)

Most critical are the materials for the chamber body Very high sensitivity using NAA using MIT reactor and U of Alabama counting/chemical processing

Material	Origin	U(ppt)	Th (ppt)	K (ppt)
Synthetic silica	BaBar DIRC (St Gobain)	<4.6	12±2	×4600
Polycarbonate	Dow Corning pellets	<6.5	<33	18000±2000
PTFE teflon	DuPont TE6472 powder	<44	<1.8	2500±800
PFA teflon	DuPont 440HP pellets	<1.8	<1.9	<900

Isotopic enrichment for a gaseous substance like Xe is most economically achieved by ultracentrifugation

Russia has enough production capacity to process 100 ton Xe and extract up to 10 ton ¹³⁶Xe in a finite time

This separation step that rejects the light fraction is also very effective in removing ⁸⁵Kr (T_{1/2}=10.7 yr) that is present in the atmosphere from spent fuel reprocessing

First 200 kg pilot production started in the Summer of 2001 and was successfully completed in May 2003

Funding by DoE-EM, Stanford and University of Alabama

In-kind natural Xe contribution By ITEP

This is already the largest non-fissile isotope enrichment program ever entertained !

Review

Detector

Drift trajectories - crossed wires

²⁹ January 2004 MB,GG

Electronics & DAQ

- Signals from detector brought outside cryostat and shielding on stripline cables. Capacitance is ok.
- Front end for ionization and APD's is Babar charge amplifier running as simple charge integrator.
 - Followed by continuously running 1 MS/s ADC
 - 32 channels are multiplexed (with trigger sums calculated on the fly) and transmitted on optical fiber to back end.
- ~100 APD channels; ~200 ionization channels
- Back end is commercial PC with PCI-fiber adapter. Software is simple part of trigger and FIFO manager.

Cryostat Cross Section

Copper Vessel Supporting its Own Weight and 50mm of Lead and Full Vacuum

Full detector with shielding

WIPP Schematic Overall View

WIPP Facility and Stratigraphic Sequence

Jun 2, 2004

EXO - SLAC Pr

R&D: to do in '05

- Single ion Ba⁺ tagging at different residual Xe pressures
- Ba ion lifetime and grabbing from LXe
- Single ion Ba tagging in directly LXe
- Construction/operation of 200 kg ¹³⁶Xe prototype detector
 - Gain operational experience on a large LXe detector underground
 - Measure 2v mode in Xe
 - Have a shot at the measurement of the neutrino mass !