

E. R. Colby[†], B. M. Cowan, R. Ischebeck, M. Lincoln, N. Na, R. J. Noble, C. M. Sears, R. H. Siemann, J. E. Spencer, D. R. Walz, N. Wu

S. Tantawi, Z. Zhang

Stanford University

R. L. Byer, T. Plettner

[†] ecolby@slac.stanford.edu

Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC) and DE-FG03-97ER41043-II (LEAP).

E163: Laser Acceleration at the NLCTA

PIs: Robert H. Siemann (50%), SLAC & Robert L. Byer, Stanford

<u>Staff Physicists</u> Eric R. Colby (100%), Spokesman Robert J. Noble (30%) James E. Spencer (70%)

<u>Staff Engineer</u> Dieter Walz (CEF, 10%)

<u>Postdoctoral RAs</u> Rasmus Ischebeck (50%) <u>Graduate Students</u> Ben Cowan Melissa Lincoln Neil Na Chris Sears Ning Wu

<u>E-163 Collaborators</u> Tomas Plettner Stanford University Jamie Rosenzweig UCLA Sami Tantawi (ARDA) Zhiyu Zhang (ARDA)

Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC) and DE-FG03-97ER41043-II (LEAP).

Motivation for Dielectric Structure Based Laser Acceleration

For HEP machines: Gradient and power efficiency are paramount

Dielectrics have significantly higher damage threshold than metals, so higher gradients are potentially possible (typically GV/m vs 100 MV/m)

 Structures are all solid-state, so nonlinearities and shot-to-shot reproducibility problems inherent in plasma accelerators are avoided

 Power sources and structure fabrication techniques enjoy wide markets, rapid R&D by industry (DPSS lasers: ¹0.22 B\$/yr vs. ¹0.060M\$/yr for power tubes)

For radiation sources: Short bunches and peak power are paramount

 Short wavelength acceleration naturally leads to short bunches (~100 atcessed) and short radiation pulses if used to generate radiation

 May one day lead to fully-integrated power source/accelerator systems on a single substrate accelerator

Experimental Results

Apparatus for Laser-Driven Dielectric-Structure Accelerator Demonstration

HEPL Superconducting Accelerator on Stanford Campus

IFEL-ITR laser beam alignment

First observation of Laser-Driven Particle Acceleration of **Relativistic Electrons in a semi-infinite vacuum space***

laser timing (psec

The experiment

- single linearly polarized laser beam
- visible near IR wavelength (800 nm)
- 30 MeV electron beam
- · 2 psec pulse duration of laser and e-beam
- e-beam runs through a very thin disposable boundary that terminates the laser field

The disposable boundary

 $8\mu m$ thick kapton tape with a $1\mu m$ thick reflective gold film tape is moved to a new position for each laser shot. This allows for operation above the laser damage threshold. During the 2 psec laser pulse the gold surface remains reflective and only starts to degrade after 10 psec, Well after the passage of the e-beam.

No significant e-beam degradation from the tape was observed

*Supported by DOEW grants DE-FG03-97ER41276 and DE-AC02-76SF00515.

laser timing (psec)

First Demonstration of Harmonic Inverse FEL Interaction

•Laser Introduced off-axis (angle=15 mrad) with undulator de-tuned to give electrons net angle motion to coincide with laser. This increases even harmonics of interaction and simplifies laser introduction. Laser angle also needed for ITR experiment.

•Took ~150 runs at different gap heights to form plot. Compared to simulation. Observe 4th, 5th, and 6th harmonic peaks. Note: beam energy at HEPL 30 MeV; design value (for E-163) is 60 MeV, giving a starting harmonic of 4.

Development of Enabling Technologies

Efficient laser power is currently available

• O • • CRYSTAL FIBRE

nLIGHT

300W (cw), η_e=50%, λ=780-1000 nm

High Power Stacks

nLight Photonics' high power stacked bar module provides state-of-the-art power levels in a compact package. Starting with high power diode 1 cm bars, multiple modules are stacked to provide extremely high output power. These modules are water cooled to maximize output power without sacrificing the lifetime of the diode.

Preliminary Data Sheet | NL-SAG

	modules are water cooled to maximize output power without sacrificing the lifetime of the diode.	
	Optical	
	Center Wavelength (Range)	780-1000nm
<	CW Output Power	300W (6 plates)
	Center Wavelength Tolerance	±3.0nm
	Array Length	1cm
-	Emitter Area	150 x 1μm
1.60	Number of Emitters	19 x 6
calfiber	Emitter Size	150um
stripping	Electrical	
	Total Conversion Efficiency	50%
_	Threshold Current	ÍUÁ
	Operationg Current	60A
	Operating Voltage	< 12V

$\eta_{tot} = (90\%)(75\%)(50\%) = 34\%$ wall plug-to-light

Operating Temperature Fluid Flow Rate Inlet to Outlet presure drop Deionized Water Resistivity Filter 300 ml/min/plate 30 psi .5 – 2Mohm-cm < 20µm

0.04Ω

High Power Fiber Laser Sub Assembly - BCU-150-01-Yb

		the second second second second		High Pow
				nLight Photoni module provid levels in a com with high pow multiple modu extremely high modules are w output power v
÷ .4:				Optical
	and the second			Center Waveleng
and an and a second	COLUMN TO A STREET		C	CW Output Powe
A Shares and		Taper Active fiber		Center Waveleng
The same trace	Pump delivery fiber	Photo sensitive fiber Outp with Bragg grating	but fiber	Array Length
				Emitter Area
Specifications				Number of Emitt
Pump interface	Fiber: 400 µm / NA 0.22 pure silica core optical fiber Cable: Steel reinforced cable		Emitter Size	
			Flandwingl	
	Connector:	LD-80, angle polished. Includes	mode stripping	Electrical
Technology	Slone efficiency	75%		Total Conversion
reennotosy	Single mode:	Yes		Threshold Curren
	Active fiber length:	< 2 meters (975 nm) / < 6 m (915	m)	Operationg Curre
	Active fiber mode field diameter:	20 ± 2 µm		Operating Voltag
	Pump absorption @ 915 nm:	~ 3 dB/m		Series Resistance
	Pump absorption @ 976 nm:	~ 9 dB/m		
Output	Laser wavelength:	1073 ± 1 nm	n = (9)	0%)(75%)(
	Emission bandwidth:	< 0.2 nm	tot (
_	Output beam diameter:	20 ± 2 µm		Ciperating tempe
	Output beam NA:	~ 0.05		Fiuld Flow Rate
	Tested output power	150 W		Inlet to Outlet pre
	rested output power:	150 10		Deionized Water

Cable:

Connector

Steel reinforced cable

LD-80, angle polished

Optical Phase Locking of Modelocked Lasers

[†] Supported by DOEW grants DE-FG03-97ER41276 and DE-AC02-76SF00515.

Enabling Technologies for Laser Accelerators

Silicon micromachining Advantages of Si advanced micromachining technology possibility for integrated electronic circuits optically transparent 1.5-10 μm abundant and inexpensive high index of refraction good heat conductor radiation resistant Optical quality surfaces Challenges limited geometry mm-deep trenches freedom with existing anisotropic etching techniques semiconductor: → lower bandgap energy, easier multiphoton absorbtion wer laser damage threshold Byer Group, Stanford Ceramics micromachining Advantages of ceramics possibility for magnetic and optical materials from compatible substrates

- macroscopically amorphous: no restricted geometry limitations
- potentially higher degree of purity and less defect sites
- enhanced flexibility in mixing of different materials
- do not require expensive crystal growth step
- typical substrates like YAG: larger bad gap \rightarrow also transparent at visible wavelengths
- → higher laser damage threshold
- \rightarrow higher melting points

	and the second se
and the second se	
	and the second se
Construction of the second	
	-
	-
	-
	-

50 μm spacing pattern Imprinted with a Silicon preform

Challenges

 • optical ceramics fabrication technology is a relatively new topic • micromachining technology on ceramics ot been developed.

Romain Gaume, Stanford

Measurements with Photonic Band Gap Fibers

- Coupling of electron beam and laser into the same fiber
 - Explore coupling with sufficient free space
- Measurement of the transmission bandwidth
- Coupling of radially polarized light (TEM $^*_{01}$) into the fiber
 - Creation of an accelerating mode
- Measurement of mode profiles
 - Far field intensity distribution
 - Distribution at the exit of the fiber
- Temperature dependency of phase velocity
 - Measurement using interferometer
- Vibration sensitivity
- Address technical issues on the road to a photonic band gap fiber accelerator

Radiation Hardness of Optical Materials

- Co⁶⁰ γs on ¹/₂-in Borosilicate glass(left) and Silica (right).
- Much water and many low energy valence states.
- Heraeus uses Flame Hydrolysis of SiCl₄.
- Suprasil300 impurities + water ≤ 1 ppm (µg/g).
- Polished samples from IMRA: 3,6,12,24,48mm.

IMRA America, Inc. Ann Arbor, MI

•Collaboration to draw first made-toorder PBG accelerator fiber

Crystal Fibre Birkerød, Denmark

E-163 Experiments

- New large chamber to accommodate range of experiments & their diagnostics
- Components inside chamber mounted on thermally-stabilized kinematically-supported breadboard
- Chamber sits on a larger optical table; will have focusing optics and diagnostics
- Microbunching hardware: IFEL plus chicane. Already fabricated.
- Permanent magnet Quadrupole Triplet for focusing into small apertures of laser structures

Microstructure Development

Planar photonic accelerator structures

Vacuum defect/beam path

silicon

Structure contour shown for z = 0; field normalized to $E_{arc} = 1$

- Found accelerating mode in planar photonic bandgap structure
- Developed method of optical focusing for particle guiding over ~1m; examined longer-range beam dynamics
- Simulated several coupling techniques

• Current work:

- Exploring fabrication techniques
- Simulating effects of fabrication error
- Developing efficient coupling

S. Y. Lin *et. al.*, Nature **394**, 251 (1998)

Free Space Coupler: Fiber Cleave

Coupling efficiency controlled by angle θ

- Solve reciprocal problem: 1. Load field profiles from MIT Photonic Bands code, assuming infinite waveguide in propagating direction
 - 2. Add phase factor E=E*exp(i*k*z);
 - 3. E and H fields along x and z direction decomposed into x' and z' direction
 - 4. Apply Fresnel's coefficient at the air-dielectric interface to calculate transmitted field
 - 5. E and H fields composed back to x and z

e⁻

Calculate point sources and radiate into farfield 6. (custom Matlab vector diffraction code)

Planar Bragg waveguide structure Zhiyu Zhang, ARDA

Laser Accelerator Efficiency

What efficiency can be achieved & what are the implications?

High efficiency => near field structures with R ~ λ .

Consequence is small charge/bunch (calculations for a reasonable example structure)

Increase efficiency by incorporating the accelerator in an optical cavity with coupling matched to the beam

Results of Efficiency Analysis

- Luminosity of a laser driven linear collider must come from spot size and repetition rate
- Higher charge/bunch applications will need open structures. Efficiency could be increased with an optical cavity.

E-163 Progress and Plans

E-163 Accomplishments and Plans

Accomplishments since last Review:

- Civil construction for control room/expt. prep. building completed
- 500 s.f. class 10,000 clean room completed for laser
- Laser system installed and recommissioned in clean room
- Core of LLRF system installed
- Components for new NLCTA injector nearly complete
- Permission to remove thermionic gun granted 4/27/05

Plans

- Commission rf gun in July/August
- Establish 50 pC low- $\delta p/p_o$ and 1 nC operation modes
- Begin E-163 experiment beamline buildup in September
- Commission E-163 with ITR, IFEL in CY06Q1
- Conduct first staging experiment (IFEL bunch, ITR accel) in CY06Q2
- Commence microstructure tests

Next 2 Years

Roadmap

- Complete Inverse Transition Radiation Experiment
 - Boundary condition (in-)dependence
 - Angular dependence
- Commission optical buncher (IFEL and chicane)
- Conduct acceleration experiment (IFEL buncher, ITR) accelerator)
- Install Nd:YAG laser and test planar Bragg waveguide structure
- Test PBG fiber structures (free-space TM_{01}^* end-coupled)
- Continue degenerate OPA development (wavelength doubler)
- Investigate engineering issues: thermal, vibration, and tolerance
- Phase lock two lasers

3-5 Years

- Develop structures specifically for radiation generation
 As antennae for beam diagnostics
 As sources of ps- and ultimately fs-duration radiation
- Test woodpile- and collonade-type structures (lithographic process)
- Continue to push gradient & efficiency (low-Q, small aperture)
- Develop structures for light source use (high-Q, large aperture)
- Develop waveguiding power coupler
- Investigation laser pulse recirculation
- Develop a full accelerator "unit" (couplers+structure, environmental controls, diagnostics, possibly focusing) _
- Engineer and test structures using the high-efficiency lasers

